Thromb Haemost 2004; 92(03): 550-558
DOI: 10.1160/TH03-07-0460
Blood Coagulation, Fibrinolysis and Cellular Haemostasis
Schattauer GmbH

Antithrombin reduces ischemia/reperfusion-induced liver injury in rats by activation of cyclooxygenase-1

Naoaki Harada
1   Department of Diagnostic Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
,
Kenji Okajima
1   Department of Diagnostic Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
,
Mitsuhiro Uchiba
1   Department of Diagnostic Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
,
Shigeki Kushimoto
1   Department of Diagnostic Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
,
Hirotaka Isobe
1   Department of Diagnostic Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
› Author Affiliations
Further Information

Publication History

Received 13 July 2003

Accepted after resubmission 04 June 2004

Publication Date:
30 November 2017 (online)

Preview

Summary

This study was conducted to determine which isoform of cyclooxygenase (COX) is more significantly involved in the antithrombin (AT)-induced increase in prostaglandin production in the liver of rats, subjected to hepatic ischemia/reperfusion (I/R). Hepatic tissue levels of 6-keto-PGF, a stable metabolite of prostacyclin (PGI2), and PGE2 were transiently increased 1 hour after reperfusion. Thereafter, hepatic PGE2 levels were gradually increased until 6 hours after reperfusion, while hepatic 6-keto-PGF levels were decreased to the pre-ischemia levels at 6 hours after reperfusion. AT significantly enhanced increases in hepatic tissue levels of 6-keto-PGF and PGE2 seen 1 hour after reperfusion, while it inhibited increases in hepatic PGE2 levels seen 6 h after reperfusion. Neither dansyl-Glu-Gly-Arg-chloromethyl ketone-treated factor Xa (DEGR-Xa), a selective inhibitor of thrombin generation, nor Trp49-modified AT which lacks affinity for heparin, showed any effects on these changes. Pretreatment with indomethacin (IM), a non-selective inhibitor of COX, inhibited AT-induced increases in hepatic tissue levels of 6-keto-PGF and PGE2 seen 1 hour after reperfusion, whereas pretreatment with NS-398, a selective inhibitor of COX-2, did not. The increase in hepatic tissue blood flow and inhibition of hepatic inflammatory responses seen in animals given AT were reversed by pretreatment with IM, but were not affected by pretreatment with NS-398. Administration of iloprost, a stable analog of PGI2, and PGE2 produced effects similar to those induced by AT. Increases in hepatic tissue levels of PGE2 6 hours after reperfusion were inhibited by pretreatment with NS-398. Although AT did not affect COX-1 mRNA levels 1 hour after reperfusion, it inhibited the I/R-induced increases in hepatic tissue levels of both PGE2 and COX-2 mRNA 6 hours after reperfusion. These observations strongly suggested that AT might reduce the I/R-induced liver injury by increasing the production of PGI2 and PGE2 through activation of COX-1. Furthermore, since TNF-a is capable of inducing COX-2, inhibition of TNF-a production by AT might inhibit COX-2-mediated PGE2 production. These effects induced by AT might contribute to its anti-inflammatory activity.