Thromb Haemost 2005; 94(01): 4-16
DOI: 10.1160/TH04-12-0812
Review Article
Schattauer GmbH

Glycosaminoglycan: a candidate to stimulate the repair of chronic wounds

Philip V. Peplow
1   Department of Anatomy and Structural Biology, University of Otago, Dunedin, New Zealand
› Author Affiliations
Further Information

Publication History

Received 16 December 2004

Accepted after resubmission 20 April 2005

Publication Date:
05 December 2017 (online)

Summary

A persistent inflammation with large numbers of neutrophils is found in chronic wounds. Secretory products released from the neutrophils, which include proteinases and a heparin-binding protein, are detrimental to wound healing as they cause degradation of the extracellular matrix and growth factors, and promote further recruitment of neutrophils to the wound area. The neutrophil-derived elastase, cathepsin G, proteinase-3 and heparin-binding protein are cationic, and it is hypothesized that their effects can be inhibited by electrostatic binding with certain anionic polymers such as glycosaminoglycans or functionalized dextrans. A sustained delivery of such compounds alone or in combination from a biodegradable carrier may provide a stimulus for these wounds to pass to the next stage of repair.

 
  • References

  • 1 Herrick SE, Sloan P McGork. et al. Sequential changes in histologic pattern and extracellular matrix deposition during the healing of chronic venous ulcers. Am J Pathol 1962; 141: 1085-95.
  • 2 Phillips TJ, Palko MJ, Bhawan J. Histologic evaluation of chronic human wounds treated with hydrocolloid and non-hydrocolloid dressings. J Am Acad Dermatol 1994; 30: 61-4.
  • 3 Clark RAF. Continuing medical education. Cutaneous tissue repair. Basic biologic considerations. I. J Am Acad Dermatol 1985; 13: 701-24.
  • 4 Reed BR, Clark RAF. Continuing medical education. Cutaneous tissue repair. Practical implications of current knowledge. II. J Am Acad Dermatol 1985; 13: 919-41.
  • 5 Campbell EJ. Preventive therapy of emphysema. Lessons from the elastase model. Am Rev Respir Dis 1986; 134: 435-7.
  • 6 Travis J, Salvesen GS. Human plasma proteinase inhibitors. Annu Rev Biochem 1983; 52: 655-709.
  • 7 Potempa J, Korzus E, Travis J. The serpin superfamily of proteinase inhibitors: structure, function, and regulation. J Biol Chem 1994; 269: 15957-60.
  • 8 Grinnell F, Zhu M. Fibronectin degradation in chronic wounds depends on the relative levels of elastase, alpha1-proteinase inhibitor, and alpha2 macroglobulin. J Invest Dermatol 1996; 106: 335-41.
  • 9 Katz M, Alvarez A, Kirsner R. et al. Human wound fluid from acute wounds stimulates fibroblast and endothelial growth. J Am Acad Dermatol 1991; 25 (6, Part 1) 1054-8.
  • 10 Bucalo B, Eaglstein W, Falanga V. Inhibition of cell proliferation by chronic wound fluid. Wound Rep Reg 1993; 1: 181-6.
  • 11 Ito A, Sato T, Mori Y. Tumour necrosis factor bifunctionally regulates matrix metalloproteinases and tissue inhibitor of metalloproteinases (TIMP) production by human fibroblasts. Fed Eur Biochem Soc 1990; 269: 93-5.
  • 12 Murphy G, Willenbrook F, Crabbe T. et al. Regulation of matrix metalloproteinase activity. Ann NY Acad Sci 1994; 732: 31-41.
  • 13 Madlener M, Parks WC, Werner S. Matrix metalloproteinases (MMPs) and their physiological inhibitors (TIMPs) are differentially expressed during excisional skin wound repair. Exp Cell Res 1998; 242: 201-10.
  • 14 Agren MS, Taplin CJ, Woessner Jr JF. et al. Collagenase in wound healing: effect of age and wound type. J Invest Dermatol 1992; 99: 709-14.
  • 15 Beaudeux JL, Giral P, Bruckert E. et al. Matrix metalloproteinases, inflammation and atherosclerosis: therapeutic perspectives. Clin Chem Lab Med 2004; 42: 121-31.
  • 16 Rogers AA, Burnett S, Moore JC. et al. Involvement of proteolytic enzymes – plasminogen activators and matrix metalloproteinases – in the pathophysiology of pressure ulcers. Wound Rep Reg 1995; 3: 273-83.
  • 17 Trengrove NJ, Stacey MC, Macauley S. et al. Analysis of the acute and chronic wound environments: the role of proteases and their inhibitors. Wound Rep Reg 1999; 7: 442-52.
  • 18 Lundqvist K, Herwald H, Sonesson A. et al. Heparin binding protein is increased in chronic leg ulcer fluid and released from granulocytes by secreted products of Pseudomonas aeruginosa. Thromb Haemost 2004; 92: 281-7.
  • 19 Bosshart H, Heinzelmann M. Arginine-rich cationic polypeptides amplify lipopolysaccharide-induced monocyte activation. Infection Immunity 2002; 70: 6904-10.
  • 20 Pereira HA. CAP37, a neutrophil-derived multifunctional inflammatory mediator. J Leukoc Biol 1995; 57: 805-81.
  • 21 Henson PM, Johnston Jr RB. Tissue injury in inflammation: Oxidants, proteinases, and cationic proteins. J Clin Invest 1987; 79: 669-74.
  • 22 Dallegri F, Ottonello L. Tissue injury in neutrophilic inflammation. Inflamm Res 1997; 46: 382-91.
  • 23 Edens HA, Parkos CA. Modulation of epithelial and endothelial paracellular permeability by leukocytes. Adv Drug Deliver Rev 2000; 41: 315-28.
  • 24 Carlos TM, Harlan JM. Leukocyte-endothelial adhesion molecules. Blood 1994; 84: 2068-101
  • 25 Muller WA. Leukocyte-endothelial cell interactions in the inflammatory response. Lab Invest 2002; 82: 521-33.
  • 26 Stewart M, Thiel M, Hogg N. Leukocyte integrins. Current Opin Cell Biol 1995; 7: 690-6.
  • 27 Dejana E, Spagnuolo R, Bazzoni G. Interendothelial junctions and their role in the control of angiogenesis, vascular permeability and leukocyte transmigration. Thromb Haemost 2001; 86: 308-15.
  • 28 Chavakis T, Preissner KT, Santoso S. Leukocyte trans-endothelial migration: JAMs add new pieces to the puzzle. Thromb Haemost 2003; 89: 13-17.
  • 29 Gautam N, Olofsson AM, Herwald H. et al. Heparin-binding protein (HBP/CAP37): A missing link in neutrophil-evoked alteration of vascular permeability. Nature Med 2001; 7: 1123-7.
  • 30 Olsson I, Gardell S. Isolation and characterization of glycosaminoglycans from human leukocytes and platelets. Biochem Biophys Acta 1967; 141: 348-57.
  • 31 Olsson I. Mucopolysaccharides of rabbit bone marrow cells. Exp Cell Res 1971; 67: 416-26.
  • 32 Avila JL. The influence of the type of sulphate bond and degree of sulphation of glycosaminoglycans on their interaction with lysosomal enzymes. Biochem J 1978; 171: 489-91
  • 33 Avila JL, Convit J. Inhibition of leucocytic lysosomal enzymes by glycosaminoglycans in vitro. Biochem J 1975; 152: 57-64.
  • 34 Avila JL, Convit J. Physicochemical characteristics of the glycosaminoglycanlysosomal enzyme interaction in vitro. A model of control of leucocytic lysosomal activity. Biochem J 1976; 160: 129-36.
  • 35 Kostoulos G, Horler D, Naggi A. et al. Electrostatic interactions between human leukocyte elastase and sulfated glycosaminoglycans: Physiological implications. Biol Chem 1997; 378: 1481-9.
  • 36 Frommherz K, Faller B, Bieth JG. Heparin strongly decreases the rate of inhibition of neutrophil elastase by α1-proteinase inhibitor. J Biol Chem 1991; 266: 15356-62.
  • 37 Ermolieff J, Boudier C, Laine A. et al. Heparin protects cathepsin G against inhibition by protein proteinase inhibitors. J Biol Chem 1994; 269: 29502-8.
  • 38 Borregaard N, Cowland JB. Granules of the human neutrophilic polymorphonuclear leukocyte. Blood 1997; 89: 3503-21.
  • 39 Tapper H, Karlsson A, Morgelin M. et al. Secretion of heparin-binding protein from human neutrophils is determined by its localization in azurophilic granules and secretory vesicles. Blood 2002; 99: 1785-93.
  • 40 Iversen LF, Kastrup JS, Bjorn SE. et al. Structure of HBP, a multifunctional protein with a serine proteinase fold. Nature Struct Biol 1997; 4: 265-8.
  • 41 Olofsson AM, Vestberg M, Herwald H. et al. Heparin-binding protein targeted to mitochondrial compartments protects endothelial cells from apotosis. J Clin Invest 1999; 104: 885-94.
  • 42 Ruoslahti E. Proteoglycans in cell regulation. J Cell Biol 1989; 264: 13369-72.
  • 43 Hardingham TE, Fosang AJ. Proteoglycans: many forms and many functions. FASEB J 1992; 6: 861-70.
  • 44 Kjellen L, Lindahl U. Proteoglycans: structures and interactions. Annu Rev Biochem 1991; 60: 443-75.
  • 45 Yeung BKS, Chong PYC, Petillo PA. Synthesis of Glycosaminoglycans. In: Glycochemistry Principles, Synthesis, and Applications. ed Wang PG, Bertozzi CR. Marcel Dekker; New York: 2001: 425-92.
  • 46 Lindahl U, Hook M. Glycosaminoglycans and their binding to biological macromolecules. Ann Rev Biochem 1978; 47: 385-417.
  • 47 Margolis RK, Margolis RU. Structure and Distribution of Glycoproteins and Glycosaminoglycans. In: Complex Carbohydrates of Nervous Tissue. ed Margolis RU, Margolis RK. Plenum Press; New York: 1979: 45-73.
  • 48 Zhang F, Wu Y, Ma Q. et al. Studies on the effect of calcium in interactions between heparin and heparin cofactor II using surface plasmon resonance. Clin Appl Thromb Hemostasis 2004; 10: 249-57.
  • 49 Wills BA, Oragui EE, Dung NM. et al. Size and charge characteristics of the protein leak in dengue shock syndrome. J Infect Dis 2004; 190: 810-8.
  • 50 Khedun SM, Naicker T, Moodley J. et al. Urinary heparan sulfate proteoglycan excretion in black African women with pre-eclampsia. Acta Obstet Gynec Scand 2002; 81: 308-12.
  • 51 Hassig A, Wen-Xi L, Stampfli K. The pathogenesis and prevention of atherosclerosis. Med Hypoth 1996; 47: 409-12.
  • 52 Tyler-Cross R, Sobel M, McAdory LE. et al. Structure-function relations of antithrombin III-heparin interactions as assessed by biophysical and biological assays and molecular modeling of peptide-pentasaccharide-docked complexes. Arch Biochem Biophys 1996; 334: 206-13.
  • 53 Blackwell J, Schodt KP, Gelman RA. Polysaccharide-polypeptide systems as models for heparin interactions. Fed Proc 1977; 36: 98-101.
  • 54 Gelman RA, Blackwell J. Mucopolysaccharidepolypeptide interactions: effect of the position of the sulfate group. Biochim Biophys Acta 1973; 297: 452-5.
  • 55 Gelman RA, Blackwell J, Mathews MB. Interactions of an intact proteoglycan and its fragments with basic homopolypeptides in dilute aqueous solution. Biochem J 1974; 141: 445-54.
  • 56 Casu B. Protein Binding of Sulfated Glycosaminoglycans Searching for Specificity. In: Nonanticoagulant Actions of Glycosaminoglycans. ed Harenberg J, Casu B. Plenum Press; New York: 1996: 89-99.
  • 57 Fransson LA. Structure and function of cell-associated proteoglycans. Trends Biochem Sci 1987; 12: 406-11.
  • 58 Kraemer PM. Heparin releases heparan sulfate from the cell surface. Biochem Biophys Res Commun 1977; 78: 1334-40.
  • 59 Shriver Z, Liu D, Sasisekharan R. Emerging views of heparan sulfate glycosaminoglycan structure/activity relationships modulating dynamic biological functions. Trends Cardiovasc Med 2002; 12: 71-7.
  • 60 Engelberg H, Dudley A, Freman L. An improved method for the determination of plasma heparin. J Lab Clin Med 1955; 46: 653-6.
  • 61 McCarthy KJ, Accavitti MA, Couchman JR. Immunological characterization of a basement membranespecific chondroitin sulphate proteoglycan. J Cell Biol 1989; 109: 3187-98.
  • 62 Daugaard S, Strange L, Schiodt T. Immunohistochemical staining for chondroitin sulphate and keratan sulphate. An evaluation of two monoclonal antibodies. Histochem 1991; 95: 585-9.
  • 63 Yeo TK, Brown L, Dvorak HF. Alterations in proteoglycan synthesis common to healing wounds and tumors. Am J Pathol 1991; 138: 1437-50.
  • 64 Penc SF, Pomahac B, Eriksson E. et al. Dermatan sulfate activates nuclear factor-kappab and induces endothelial and circulating intercellular adhesion molecule-1. J Clin Invest 1999; 103: 1329-35.
  • 65 Yanagishita M, Hascall VC. Cell surface heparan sulfate proteoglycans. J Biol Chem 1992; 267: 9451-4.
  • 66 Subramanian SV, Fitzgerald ML, Bernfield M. Regulated shedding of syndecan- 1 and –4 ectodomains by thrombin and growth factor receptor activation. J Biol Chem 1997; 272: 14713-20.
  • 67 Kainulainen V, Wang H, Schick C. et al. Syndecans, heparan sulfate proteoglycans, maintain the proteolytic balance of acute wound fluids. J Biol Chem 1998; 273: 11563-9.
  • 68 Lund LR, Romer J, Bugge TH. et al. Functional overlap between two classes of matrix-degrading proteases in wound healing. EMBO J 1999; 18: 4645-56.
  • 69 Liang JF, Li Y, Yang VC. The potential mechanism for the effect of heparin on tissue plasminogen activator-mediated plasminogen activation. Thromb Res 2000; 97: 349-58.
  • 70 Brunner G, Reimbold K, Meissauer A. et al. Sulfated glycosaminoglycans enhance tumor cell invasion in vitro by stimulating plasminogen activation. Exptl Cell Res 1998; 239: 301-10.
  • 71 Szabo I, Simon Jr M, Hunyadi J. Plasmin promotes keratinocyte migration and phagocytic-killing accompanied by suppression of cell proliferation which may facilitate re-epithelialization of wound beds. Clin Devel Immunol 2004; 11: 233-40.
  • 72 Winston BW, Krein PM, Mowat C. et al. Cytokineinduced macrophage differentiation: a tale of 2 genes. Clin Invest Med 1999; 22: 236-55.
  • 73 Fridman R, Lider O, Naparstek Y. et al. Soluble antigen induces T lymphocytes to secrete an endoglycosidase that degrades the heparan sulfate moiety of subendothelial extracellular matrix. J Cell Physiol 1987; 130: 85-92.
  • 74 Vilar R, Ghael D, Li M. et al. Nitric oxide degradation of heparin and heparan sulphate. Biochem J 1997; 324: 473-9.
  • 75 Wrenshall LE, Stevens RB, Cerra FB. et al. Modulation of macrophage and B cell function by glycosaminoglycans. J Leukocyte Biol 1999; 66: 391-400.
  • 76 Frenkel O, Shani E, Ben-Bassat I. et al. Activated macrophages for treating skin ulceration: gene expression in human monocytes after hypo-osmotic shock. Clin Exptl Immun 2002; 128: 59-66.
  • 77 Haba M, Watanabe J. Pharmacokinetic analysis of scavenger receptor-mediated uptake of mucopolysaccharides in various cells. J Pharmaceut Soc Japan 1998; 118: 51-71.
  • 78 Haba M, Urano K, Yuasa H. et al. Molecular weight dependency in the uptake of fractionated [3H] heparin in isolated rat Kupffer cells. Biol Pharm Bull 1996; 19: 864-8.
  • 79 Matsuno R, Aramaki Y, Arima H. et al. Scavenger receptors may regulate nitric oxide production from macrophages stimulated by LPS. Biochem Biophys Res Commn 1997; 237: 601-5.
  • 80 Lever R, Hoult JR, Page CP. The effects of heparin and related molecules upon the adhesion of human polymorphonuclear leucocytes to vascular endothelium in vitro . Br J Pharm 2000; 129: 533-40.
  • 81 Diamond MS, Alon R, Parkos CA. et al. Heparin is an adhesive ligand for the leukocyte integrin Mac-1 (CD11b/CD18). J Cell Biol 1995; 130: 1473-82.
  • 82 Harenberg J, Malsch R, Piazolo L. et al. Analysis of heparin binding to human leukocytes using a fluorescein-5-isothiocyanate labeled heparin fragment. Cytometry 1996; 23: 59-66.
  • 83 Wan JG, Mu JS, Zhu HS. et al. N-desulfated nonanticoagulant heparin inhibits leukocyte adhesion and transmigration in vitro and attenuates acute peritonitis and ischemia and reperfusion injury in vivo. Inflammation Res 2002; 51: 435-43.
  • 84 Hopfner M, Alban S, Schumacher G. et al. Selectinblocking semisynthetic sulfated polysaccharides as promising anti-inflammatory agents. J Pharm Pharmacol 2003; 55: 697-706.
  • 85 Salas A, Sans M, Soriano A. et al. Heparin attenuates TNF-alpha induced inflammatory response through a CD11b dependent mechanism. Gut 2000; 47: 88-96.
  • 86 Ley K, Cerrito M, Arfors KE. Sulfated polysaccharides inhibit leukocyte rolling in rabbit mesentery venules. Am J Physiol 1991; 260: H1667-1673
  • 87 Tangelder GJ, Arfors KE. Inhibition of leukocyte rolling in venules by protamine and sulfated polysaccharides. Blood 1991; 77: 1565-71.
  • 88 Seeds EA, Hans J, Page CP. The effect of heparin and related proteoglycans on allergen and PAF-induced eosinophil infiltration. J Lipid Mediat 1993; 7: 269-78.
  • 89 Teixeira MM, Hellewell PG. Suppression by intradermal administration of heparin of eosinophil accumulation but not oedema formation in inflammatory reactions in guinea-pig skin. Br J Pharmacol 1993; 110: 1496-500.
  • 90 Yanaka K, Nose T. Heparin ameliorates brain injury by inhibiting leukocyte accumulation. Stroke 1996; 27: 2146-7.
  • 91 Sasaki M, Herd CM, Page CP. Effect of heparin and a low-molecular weight heparinoid on PAF-induced airway responses in neonatally immunized rabbits. Br J Pharmacol 1993; 110: 107-12.
  • 92 Bernfield M, Gotte M, Park PW. et al. Functions of cell surface heparan sulfate proteoglycans. Annu Rev Biochem 1999; 68: 729-77.
  • 93 Freeman C, Parish CR. Human platelet heparanase: purification, characterization and catalytic activity. Biochem J 1998; 330: 1341-50.
  • 94 Coleridge-Smith PD, Thomas P, Scurr JH. et al. Causes of venous ulceration: a new hypothesis. Br Med J 1988; 296: 1726-7.
  • 95 Briggaman RA, Schechter NM, Fraki J. et al. Degradation of the epidermal-dermal junction by proteolytic enzymes from human skin and human polymorphonuclear leukocytes. J Exp Med 1984; 160: 1027-42.
  • 96 Falanga V. Chronic wounds: pathophysiologic and experimental considerations. J Invest Dermatol 1993; 100: 721-5.
  • 97 Beatty K, Bieth J, Travis J. Kinetics of association of serine proteinases with native and oxidized alpha-1-proteinase inhibitor and alpha-1-antichymotrypsin. J Biol Chem 1980; 255: 3931-4.
  • 98 Pratt CW, Whinna HC, Church FC. A comparison of three heparin-binding serine proteinase inhibitors. J Biol Chem 1992; 267: 8795-801.
  • 99 Gettins PGW, Patston PA, Olson ST. Serpins: Structure, Function and Biology. RG Landes Co; Austin, Texas, USA: 1996: 65-109.
  • 100 Cooper ST, Rezaie AR, Esmon CT. et al. Inhibition of a thrombin anion-binding exosite-2 mutant by the glycosaminoglycan-dependent serpins protein C inhibitor and heparin cofactor II. Thromb Res 2002; 107: 67-73.
  • 101 Huntington JA. Mechanisms of glycosaminoglycan activation of the serpins in hemostasis. J Thromb Haemost 2003; 1: 1535-49.
  • 102 Lentini A, Ternai B, Ghosh P. Synthetic inhibitors of human leukocyte elastase. Part 1 – sulphated polysaccharides. Biochem Int 1985; 10: 221-32.
  • 103 Ying QL, Kemme M, Simon SR. Alginate, the slime exopolysaccharide of Pseudomonas aeruginosa, binds human leukocyte elastase, retards inhibition by alpha 1-proteinase inhibitor, and accelerates inhibition by secretory leukoprotease inhibitor. Amer J Respir Cell Molec Biol 1996; 15: 283-91.
  • 104 Ley K. Plugging the leaks. Nature Med 2001; 7: 1105-6.
  • 105 Rosengren S, Ley K, Arfors KE. Dextran sulfate prevents LTB4-induced permeability increase, but not neutrophil emigration in the hamster cheek pouch. Microvasc Res 1989; 38: 243-54.
  • 106 Fredens K, Dahl R, Venge P. In vitro studies of the interaction between heparin and eosinophil cationic protein. Allergy 1991; 46: 27-9.
  • 107 Redini F, Tixier JM, Petitou M. et al. Inhibition of leucocyte elastase by heparin and its derivatives. Biochem J 1988; 252: 515-9
  • 108 Walsh RL, Dillon TJ, Scicchitano R. et al. Heparin and heparan sulphate are inhibitors of human leucocyte elastase. Clin Sci 1991; 81: 341-6.
  • 109 Lider O, Mekori YA, Miller T. et al. Inhibition of T lymphocyte heparanase by heparin prevents T cell migration and T cell-mediated immunity. Eur J Immunol 1990; 20: 493-9.
  • 110 Lider O, Baharav E, Mekori YA. et al. Suppression of experimental autoimmune diseases and prolongation of allograft survival by treatment of animals with low doses of heparins. J Clin Invest 1989; 83: 752-6.
  • 111 Seeds EA, Horne AP, Tyrrell DJ. et al. The effect of inhaled heparin and related glycosaminoglycans on allergen-induced eosinophil infiltration in guinea-pigs. Pulm Pharm 1995; 8: 97-105.
  • 112 Nelson RM, Cecconi O, Roberts WG. et al. Heparin oligosaccharides bind L- and P-selectin and inhibit acute inflammation. Blood 1993; 82: 3253-8.
  • 113 Wang L, Brown JR, Varki A. et al. Heparin’s antiinflammatory effects require glucosamine 6-O-sulfation and are mediated by blockade of L- and P-selectins. J Clin Invest 2002; 110: 127-36.
  • 114 Kuschert GSV, Coulin F, Power CA. et al. Glycosaminoglycans interact selectively with chemokines and modulate receptor binding and cellular responses. Biochemistry 1999; 38: 12959-68.
  • 115 Culley FJ, Fadlon EJ, Kirchem A. et al. Proteoglycans are potent modulators of the biological responses of eosinophils to chemokines. Eur J Immunol 2003; 33: 1302-10.
  • 116 Kirker KR, Luo Y, Nielson JH. et al. Glycosaminoglycan hydrogel films as bio- interactive dressings for wound healing. Biomaterials 2002; 23: 3661-71.
  • 117 Jorneskog G, Brismar K, Fagrell B. Low molecular weight heparin seems to improve local capillary circulation and healing of chronic foot ulcers in diabetic patients. Vasa 1993; 22: 137-42.
  • 118 Hehenberger K, Kratz G, Hansson A. et al. Fibroblasts derived from human chronic diabetic wounds have a decreased proliferation rate, which is recovered by the addition of heparin. Dermatol Sci 1998; 16: 144-51.
  • 119 Zhou F, Hook T, Thompson JA. et al. Heparin and protein interactions. In: Lane DA. ed. Heparin and related polysaccharides. New York: Plenum Press; 1992: 141-153.
  • 120 Casu B. Structure and biological activity of heparin. Adv Carbohydr Chem Biochem 1985; 43: 51-134.
  • 121 Nissen NN, Shankar R, Gamelli RL. et al. Heparin and haparan sulphate protect basic fibroblast growth factor from non-enzymic glycosylation. Biochem J 1999; 338: 637-42.
  • 122 Bashkin P, Docrow S, Klagsbrun M. et al. Basic fibroblast growth factor binds to subendothelial extracellular matrix and is released by heparitinase and heparin-like molecules. Biochem 1989; 28: 1737-43.
  • 123 Folkman J, Klagsbrun M. Angiogenic factors. Science 1987; 235: 442-7.
  • 124 Vlodavsky I, Fridman R, Sullivan R. et al. Aortic endothelial cells synthesize basic fibroblast growth factor which remains cell associated and platelet-derived growth factor-like protein which is secreted. J Cell Physiol 1987; 131: 402-8.
  • 125 Yayon A, Klagsbrun M, Esko JD. et al. Cell surface, heparin-like molecules are required for binding of basic fibroblast growth factor to its high affinity receptor. Cell 1991; 64: 841-8.
  • 126 Rusnati M, Coltrini D, Oreste P. et al. The interaction of basic fibroblast growth factor (bFGF) with heparan sulfate proteoglycans. In: Nonanticoagulant Actions of Glycosaminoglycans. ed Harenberg J, Casu B. Plenum Press; New York: 1996: 171-87.
  • 127 Liu Y, Stack SM, Lakka SS. et al. Matrix localization of tissue factor pathway inhibitor-2/matrix-associated serine protease inhibitor (TFPI-2/MSPI) involves arginine-mediated ionic interactions with heparin and dermatan sulfate: heparin accelerates the activity of TFPI-2/MSPI toward plasmin. Arch Biochem Biophys 1999; 370: 112-8.
  • 128 Karlsson K. Extracellular-superoxide dismutase; association with glycosaminoglycans. Umea University Medical Dissertations New Series No 227. University of Umek; Umek: 1988
  • 129 Dandona P, Qutob T, Hamouda W. et al. Heparin inhibits reactive oxygen species generation by polymorphonuclear and mononuclear leucocytes. Thromb Res 1999; 96: 437-43.
  • 130 Scheel G, Rahfoth B, Franke J. et al. Acceleration of wound healing by local application of fibronectin. Arch Orthop Trauma Surg 1991; 110: 284-7.
  • 131 Kirker KR, Luo Y, Morris SE. et al. Glycosaminoglycan hydrogels as supplemental wound dressings for donor sites. J Burn Care Rehabil 2004; 25: 276-86.
  • 132 Kratz G, Back M, Arnander C. et al. Immobilized heparin accelerates the healing of human wounds in vivo . Scand J Plast Reconstr Hand Surg 1998; 32: 381-5.
  • 133 Kremer M, Lang E, Berger AC. Evaluation of dermal-epidermal skin equivalents (‘composite-skin’) of human keratinocytes in a collagen- glycosaminoglycan matrix (Integra artificial skin). Br J Plast Surg 2000; 53: 459-65.
  • 134 Orgill DP, Straus 2nd FH, Lee RC. The use of collagen-GAG membranes in reconstructive surgery. Ann NY Acad Sci 1999; 888: 233-48.
  • 135 Dantzer E, Queruel P, Salinier L. et al. Dermal regeneration template for deep hand burns: clinical utility for both early grafting and reconstructive surgery. Br J Plast Surg 2003; 56: 764-74.
  • 136 Shermak MA, Wong L, Inoue N, Nicol T. Reconstruction of complex cranial wounds with demineralized bone matrix and bilayer artificial skin. J Craniofacial Surg 2000; 11: 224-31.
  • 137 Lee KH. Tissue-engineered human living skin substitutes: development and clinical application. Yonsei Med J 2000; 41: 774-9.
  • 138 McLennan G, Johnson MS, Stookey KR. et al. Kinetics of release of heparin from alginate hydrogel. J Vasc Int Radiol 2000; 11: 1087-94.
  • 139 Edelman ER, Nathan A, Katada M. et al. Perivascular graft heparin delivery using biodegradable polymer wraps. Biomaterials 2000; 21: 2279-86.
  • 140 Wang XH, Li DP, Wang WJ. et al. Covalent immobilization of chitosan and heparin on PLGA surface. Int J Biol Macromol 2003; 33: 95-100.
  • 141 Oliveira GB, Carvalho Jr LB, Silva MP. Properties of carbodiimide treated heparin. Biomaterials 2003; 24: 4777-83.
  • 142 Keuren JF, Wielders SJ, Driessen A. et al. Covalently-bound heparin makes collagen thromboresistant. Arterioscler Thromb Vasc Biol 2004; 24: 613-7.
  • 143 Logeart-Avramoglou D, Jozefonvicz J. Carboxymethyl benzylamide sulfonate dextrans (CMDBS), a family of biospecific polymers endowed with numerous biological properties: a review. J Biomed Mat Res 1999; 48: 578-90.
  • 144 Floden CH, Wilkstrom K. Controlled clinical trial with dextranomer (Debrisan) on venous leg wounds. Curr Ther Res 1978; 24: 753-60.
  • 145 Howcroft AJ. A controlled trial of Dextranomer (Debrisan) in burns of the hand. Burns 1979; 6: 12-14.
  • 146 Cullen B, Smith R, McCullough E. et al. Mechanism of action of Promogran, a protease modulating matrix, for the treatment of diabetic foot ulcers. Wound Rep Reg 2002; 10: 16-25.
  • 147 Cullen B, Watt PW, Lundqvist C. et al. The role of oxidised regenerated cellulose/collagen in chronic wound repair and its potential mechanism of action. Int J Biochem Cell Biol 2002; 34: 1544-56.
  • 148 Jabr K, Johnson JH, McDonald MH. et al. Plasmamodified ACT can be used to monitor bivalirudin (Angiomax) anticoagulation for on-pump cardiopulmonary bypass surgery in a patient with heparin-induced thrombocytopenia. J Extra-Corporeal Technol 2004; 36: 174-7.
  • 149 Volpi N, Tarugi P. The protective effect on Cu2+-and AAPH-mediated oxidation of human lowdensity lipoproteins depends on glycosaminoglycan structure. Biochimie 1999; 81: 955-63.
  • 150 Dzieciuchowicz L, Checinski P, Krauss H. Heparin reduces oxidative stress in the postoperative period. Medical Science Monitor 2002; 8: CR 657-660.
  • 151 Stutzmann JM, Mary V, Wahl F. et al. Neuroprotective effect of enoxaparin, a low molecular weight heparin, in in vivo models of cerebral ischemia or traumatic brain injury: a review. CNS Drug Reviews 2002; 8: 1-30.
  • 152 Deepa PR, Varalakshmi P. Protective effect of low molecular weight heparin on oxidative injury and cellular abnormalities in adriamycin-induced cardiac and hepatic toxicity. Chem Biol Interact 2003; 146: 201-10.
  • 153 Petersen SV, Oury TD, Ostergaard L. et al. Extracellular superoxide dismutase (EC-SOD) binds to type I collagen and protects against oxidative fragmentation. J Biol Chem 2004; 279: 13705-10.
  • 154 Cortivo R, Brun P, Cardarelli L. et al. Antioxidant effects of hyaluronan and its alpha-methyl-prednisolone derivative in chondrocyte and cartilage cultures. Semin Arthritis Rheum 1996; 26: 492-501.
  • 155 Fukuda K, Takayama M, Ueno M. et al. Hyaluronic acid inhibits interleukin-1-induced superoxide anion in bovine chondrocytes. Inflamm Res 1997; 46: 114-7.
  • 156 Moseley R, Leaver M, Walker M. et al. Comparison of the antioxidant properties of HYAFF-11p75, AQUACEL and hyaluronan towards reactive oxygen species in vitro. Biomaterials 2002; 23: 2255-64.
  • 157 Balogh GT, Illes J, Szekely Z. et al. Effect of different metal ions on the oxidative damage and antioxidant capacity of hyaluronic acid. Arch Biochem Biophys 2003; 410: 76-82.
  • 158 Mo SJ, Son EW, Shee DK. et al. Modulation of TNF-alpha induced ICAM-1 expression, NO and H2O2 production by alginate, allicin and ascorbic acid in human endothelial cells. Arch Pharmacal Res 2003; 26: 244-51.
  • 159 Pieper JS, Oosterhof A, Dijkstra PJ. et al. Preparation and characterization of porous crosslinked collagenous matrices containing bioavailable chondroitin sulfate. Biomaterials 1999; 20: 847-58.
  • 160 Pieper JS, Hafmans T, Veerkamp JH. et al. Development of tailor-made collagen-glycosaminoglycan matrices: EDC/NHS crosslinking, and ultrastructural aspects. Biomaterials 2000; 21: 581-93.
  • 161 Taguchi T, Tanaka J. Swelling behavior of hyaluronic acid and type II collagen hydrogels prepared by using conventional crosslinking and subsequent additional polymer interactions. J Biomater Sci Polym Ed 2002; 13: 43-52.
  • 162 Cadee JA, de Groot CJ, Jiskoot W. et al. Release of recombinant human interleukin-2 from dextran-based hydrogels. J Controlled Release 2002; 78: 1-13.