Methods Inf Med 2009; 48(03): 299-305
DOI: 10.3414/ME0583
Original Articles
Schattauer GmbH

A Simple Modeling-free Method Provides Accurate Estimates of Sensitivity and Specificity of Longitudinal Disease Biomarkers

F. Subtil
1   Hospices Civils de Lyon, Service de Biostatistiques, Lyon, France
2   Université de Lyon, Lyon, France
3   Université Lyon 1, Villeurbanne, France
4   CNRS, UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, Equipe Biostatistique Santé, Pierre-Bénite, France
,
C. Pouteil-Noble
2   Université de Lyon, Lyon, France
3   Université Lyon 1, Villeurbanne, France
5   Hospices Civils de Lyon, Service de Néphrologie-Transplantation, Centre Hospitalier Lyon-Sud, Pierre-Bénite, France
,
S. Toussaint
2   Université de Lyon, Lyon, France
3   Université Lyon 1, Villeurbanne, France
5   Hospices Civils de Lyon, Service de Néphrologie-Transplantation, Centre Hospitalier Lyon-Sud, Pierre-Bénite, France
,
E. Villar
2   Université de Lyon, Lyon, France
3   Université Lyon 1, Villeurbanne, France
5   Hospices Civils de Lyon, Service de Néphrologie-Transplantation, Centre Hospitalier Lyon-Sud, Pierre-Bénite, France
,
M. Rabilloud
1   Hospices Civils de Lyon, Service de Biostatistiques, Lyon, France
2   Université de Lyon, Lyon, France
3   Université Lyon 1, Villeurbanne, France
4   CNRS, UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, Equipe Biostatistique Santé, Pierre-Bénite, France
› Author Affiliations
Further Information

Publication History

received: 01 July 2008

accepted: 12 March 2008

Publication Date:
17 January 2018 (online)

Summary

Objective: To assess the time-dependent accuracy of a continuous longitudinal biomarker used as a test for early diagnosis or prognosis.

Methods: A method for accuracy assessment is proposed taking into account the marker measurement time and the delay between marker measurement and outcome. It dealt with markers having interval-censored measurements and a detection threshold. The threshold crossing times were assessed by a Bayesian method. A numerical study was conducted to test the procedures that were later applied to PCR measurements for prediction of cytomegalovirus disease after renal transplantation.

Results: The Bayesian method corrected the bias induced by interval-censored measurements on sensitivity estimates, with corrections from 0.07 to 0.3. In the application to cytomegalovirus disease, the Bayesian method estimated the area under the ROC curve to be over 75% during the first 20 days after graft and within five days between marker measurement and disease onset. However, the accuracy decreased quickly as that delay increased and late after graft.

Conclusions: The proposed Bayesian method is easy to implement for assessing the time-dependent accuracy of a longitudinal biomarker and gives unbiased results under some conditions.

 
  • References

  • 1 Blokh D, Zurgil N, Stambler I, Afrimzon E, Shafran Y, Korech E, Sandbank J, Deutsch M. An information-theoretical model for breast cancer detection. Methods Inf Med 2008; 47: 322-327.
  • 2 Benish WA. The use of information graphs to evaluate and compare diagnostic tests. Methods Inf Med 2002; 41: 114-118.
  • 3 Pepe MS. The statistical evaluation of medical tests for classification and prediction. Oxford: Oxford University Press; 2003
  • 4 Sakai S, Kobayashi K, Nakamura J, Toyabe S, Akazawa K. Accuracy in the diagnostic prediction of acute appendicitis based on the Bayesian network model. Methods Inf Med 2007; 46: 723-726.
  • 5 Maojo V, Martin-Sanchez F. Bioinformatics: towards new directions for public health. Methods Inf Med 2004; 43: 208-214.
  • 6 Goebel G, Muller HM, Fiegl H, Widschwendter M. Gene methylation data – a new challenge for bioinformaticians?. Methods Inf Med 2005; 44: 516-519.
  • 7 Liska V, Holubec LJ, Treska V, Skalicky T, Sutnar A, Kormunda S, Pesta M, Finek J, Rousarova M, Topolcan O. Dynamics of serum levels of tumour markers and prognosis of recurrence and survival after liver surgery for colorectal liver metastases. Anticancer Res 2007; 27: 2861-2864.
  • 8 Roy HK, Khandekar JD. Biomarkers for the Early Detection of Cancer: An Inflammatory Concept. Arch Intern Med 2007; 167: 1822-1824.
  • 9 Ransohoff DF. Rules of evidence for cancer molecular-marker discovery and validation. Nat Rev Cancer 2004; 4: 309-314.
  • 10 Hanley JA. Receiver operating characteristics ROC methodology: The state of the art. Crit Rev Diag Imag 1989; 29: 307-335.
  • 11 Zweig MH, Campbell G. Receiver-operating characteristic (ROC) plots: a fundamental evaluation tool in clinical medicine. Clin Chem 1993; 39: 561-577.
  • 12 Pepe MS. Receiver operating characteristic methodology. J Am Stat Ass 2000; 95: 308-311.
  • 13 Zhou X-H, McClish DK, Obuchowski NA. Statistical methods in diagnostic medicine. New York: Wiley; 2002
  • 14 Etzioni R, Pepe M, Longton G, Chengcheng Hu, Goodman G. Incorporating the time dimension in receiver operating characteristic curves: A case study of prostate cancer. Med Decis Making 1999; 19: 242-251.
  • 15 Slate EH, Turnbull BW. Statistical models for longitudinal biomarkers of disease onset. Stat Med 2000; 19: 617-637.
  • 16 Zheng Y, Heagerty PJ. Semiparametric estimation of time-dependent ROC curves for longitudinal marker data. Biostatistics 2004; 5: 615-632.
  • 17 Cai T, Pepe MS, Zheng Y, Lumley T, Jenny NS. The sensitivity and specificity of markers for event times. Biostatistics 2006; 7: 182-197.
  • 18 Zheng Y, Heagerty PJ. Prospective accuracy for longitudinal markers. Biometrics 2007; 2: 332-341.
  • 19 Cai T, Cheng S. Robust combination of multiple diagnostic tests for classifying censored event times. Biostatistics 2008; 9: 216-233.
  • 20 Song X, Zhou X-H. A semiparametric approach for the covariate specific ROC curve with survival outcome. Stat Sinca 2008; 18: 947-966.
  • 21 Cai TZ. Yingye. Model checking for ROC regression analysis. Biometrics 2007; 63: 152-163.
  • 22 Pepe MS, Zheng Y, Jin Y, Huang Y, Parikh CR, Levy WC. Evaluating the ROC performance of markers for future events. Lifetime Data Anal 2008; 14: 86-113.
  • 23 Heagerty PJ, Zheng Y. Survival model predictive accuracy and ROC curves. Biometrics 2005; 61: 92-105.
  • 24 Lindsey JC, Ryan LM. Tutorial in biostatistics: methods for interval-censored data. Stat Med 1998; 17: 219-238.
  • 25 Lunn DJ, Thomas A, Best N, Spiegelhalter D. Win-BUGS – a Bayesian modelling framework: concepts, structure, and extensibility. Stat Comput 2000; 10: 325-337.
  • 26 Zhang DD, Zhou X-H, Freeman DH, Freeman JL. A non-parametric method for the comparison of partial areas under ROC curves and its application to large health care data sets. Stat Med 2002; 21: 701-715.
  • 27 McClish DK. Analyzing a portion of the ROC curve. Med Decis Making 1989; 9: 190-195.
  • 28 Naumnik B, Malyszko J, Chyczewski L, Kovalchuk O, Mysliwiec M. Comparison of serology assays and polymerase chain reaction for the monitoring of active cytomegalovirus infection in renal transplant recipients. Transplant Proc 2007; 39: 2748-2750.
  • 29 Mhiri L, Kaabi B, Houimel M, Arrouji Z, Slim A. Comparison of pp65 antigenemia, quantitative PCR and DNA hybrid capture for detection of cytomegalovirus in transplant recipients and AIDS patients. J Virol Methods 2007; 143: 23-28.
  • 30 Madi N, Al-Nakib W, Mustafa AS, Saeed T, Pacsa A, Nampoory MR. Detection and monitoring of cytomegalovirus infection in renal transplant patients by quantitative real-time PCR. Med Princ Pract 2007; 16: 268-273.
  • 31 Murtaugh PA. ROC curves with multiple marker measurements. Biometrics 1995; 51: 1514-1522.
  • 32 Emir B, Wieand S, Su JQ, Cha S. Analysis of repeated markers used to predict progression of cancer. Stat Med 1998; 17: 2563-2578.
  • 33 Emir B, Wieand S, Jung S-H, Ying Z. Comparison of diagnostic markers with repeated measurements: a non-parametric ROC curve approach. Stat Med 2000; 19: 511-523.
  • 34 Odell PM, Anderson KM, D’Agostino RB. Maximum likelihood estimation for interval-censored data using a Weibull-based accelerated failure time model. Biometrics 1992; 48: 951-959.
  • 35 Lindsey JK. A study of interval censoring in parametric regression models. Lifetime Data Anal 1998; 4: 329-354.
  • 36 Collet D. Modelling Survival Data in Medical Research. London: Chapman and Hall; 2003
  • 37 Sparling YH, Younes N, Lachin JM, Bautista OM. Parametric survival models for interval-censored data with time-dependent covariates. Biostatistics 2006; 7: 599-614.
  • 38 Shardell M, Miller RR. Weighted estimating equations for longitudinal studies with death and non-monotone missing time-dependent covariates and outcomes. Stat Med 2008; 27: 1008-1025.
  • 39 Liu L, Huang X, O’Quigley J. Analysis of Longitudinal Data in the Presence of Informative Observational Times and a Dependent Terminal Event, with Application to Medical Cost Data. Biometrics 2008; 64: 950-958.