Hamostaseologie 2011; 31(04): 275-280
DOI: 10.5482/ha-1167
Übersichtsarbeit
Schattauer GmbH

Regulation der primären Hämostase durch von-Willebrand-Faktor und ADAMTS13

Von Willebrand factor and ADAMTS13 balancing primary haemostasis
R. Schneppenheim
1   Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Germany
,
U. Budde
2   Medilys Central Laboratory Coagulation, Asklepios Clinic Hamburg, Germany
› Author Affiliations
Further Information

Publication History

eingegangen: 27 June 2011

angenommen: 01 July 2011

Publication Date:
27 December 2017 (online)

Summary

Von Willebrand factor (VWF) is an adhesive, multi-functional huge multimerized protein with multiple domains harboring binding sites for collagen, platelet glycoprotein receptors and coagulation factor VIII (FVIII). The functional domains enable VWF to bind to the injured vessel wall, to recruit platelets to the site of injury by adhesion and aggregation and to bind and protect FVIII, an important cofactor of the coagulation cascade. VWF function in primary haemostasis is located in particular in the arterial and micro-circulation. This environment is exposed to high shear forces with hydrodynamic shear rates ranging over several orders of magnitude from 10–1 to 105 s-1 and requires particular mechanisms to enable platelet adhesion and aggregation under these variable conditions. The respective VWF function is strictly correlating with its multimer size. Lack or reduction of large VWF multimers is seen in patients with von Willebrand disease (VWD) type 2A which correlates with reduction of both VWF:platelet GPIb-binding and VWF:collagen binding and a bleeding phenotype. To prevent unlimited platelet adhesion and aggregation which is the cause of the microangiopathic disorder thrombotic thrombocytopenic purpura (TTP), VWF function is regulated by its specific protease ADAMTS13. Whereas a particular susceptibility of VWF to ADAMTS13 proteolysis is the cause of a frequent VWD type 2A phenotype, lack or dysfunction of ADAMTS13, either acquired by ADAMTS13 antibodies or by inherited ADAMTS13 deficiency (Upshaw-Schulman Syndrome), causes TTP. Therefore VWD and TTP represent the opposite manifestations of VWF related disorders, tightly linked to each other.

Zusammenfassung

Der von-Willebrand-Faktor (VWF) ist ein adhäsives, riesiges, multimerisiertes Protein mit multiplen Domänen, die u.a. für die Bindung an Kollagen, Thrombozytenrezeptoren und Faktor VIII (FVIII) verantwortlich sind. Über diese funktionellen Domänen bindet VWF an die verletzte Gefäßwand, rekrutiert Thrombozyten an die verletzte Oberfläche mittels Adhäsion und Aggregation, und bindet und schützt FVIII mit seiner essenziellen Rolle in der Gerinnungskaskade. Der VWF übt seine Funktion vor allem in der arteriellen und in der Mikro-Zirkulation aus. In dieser Umgebung unterliegt er hohen Scherkräften mit hydro dynamischen Scherraten über mehrere Größenordnungen von 10–1 bis 105 s-1, was besondere Mechanismen für die Plättchenadhäsion und -aggregation unter diesen unterschiedlichen Bedingungen voraussetzt. Diese spezifischen Funktionen des VWF korrelieren sehr eng mit seiner Multimergröße. Fehlen oder Reduktion der großen VWF-Multimere sind charakteristisch für Patienten mit von-Willebrand-Syndrom Typ 2A, was mit funktionellen Einschränkungen der Bindung von VWF an Thrombozytenglykoprotein Ib und an Kollagen sowie einer Blutungsneigung einhergeht. Um eine ungebremste Thrombozyten-Aggregation, wie bei der thrombotisch- thrombo - zytopenischen Purpura (TTP) zu verhindern, wird die Funktion des VWF durch seine spezifische Protease ADAMTS13 reguliert. Während eine höhere Empfindlichkeit des VWF für die ADAMTS13-vermittelte Proteolyse ursächlich für einen häufigen Typ des VWS, den Typ 2A ist, verursachen das Fehlen oder Dysfunktion von ADAMTS13, entweder Autoantikörper- vermittelt oder durch den hereditären ADAMTS13-Mangel (Upshaw-Schulman-Syndrom), eine TTP. Somit repräsentieren VWS und TTP die eng miteinander verbundenen gegensätzlichen Manifestationen der VWF-vermittelten Krankheitsbilder

 
  • Literatur

  • 1 Von Willebrand EA. Hereditar pseudohemofili. Finska Lakarsallskapets Handl 1926; 67: 7-112.
  • 2 Zimmerman TS, Edgington TS. Factor VIII coagulant activity and factor VIII-like antigen: independent molecular entities. J Exp Med 1973; 138: 1015-1020.
  • 3 Lynch DC, Zimmerman TS, Collins CJ. et al. Molecular cloning of cDNA for human von Willebrand factor: authentication by a new method. Cell 1985; 41: 49-56.
  • 4 Ginsburg D, Handin RI, Bonthron DT. et al. Human von Willebrand factor: isolation of complementary DNA clones and chromosomal localization. Science 1985; 228: 1401-1406.
  • 5 Verweij CL, de Vries CJ, Distel B. et al. Construction of cDNA coding for human von Willebrand factor using antibody probes for colony-screening and mapping of the chromosomal gene. Nucl Acids Res 1985; 13: 4699-4717.
  • 6 Sadler JE, Shelton-Inloes BB, Sorace JM. et al. Cloning and characterization of two cDNAs coding for human von Willebrand factor. Proc Natl Acad Sci USA 1985; 82: 6394-6398.
  • 7 Titani K, Kumar S, Takio K. et al. Amino acid sequence of human von Willebrand factor. Biochemistry 1986; 25: 3171-3184.
  • 8 Ruggeri ZM. et al. Classification of von Willebrand disease. In: Verstraete M, Vermylen J, Lijnen R. (eds). Leuven University Press; 1987: 419-445.
  • 9 Mancuso DJ, Tuley EA, Westfield LA. et al. Structure of the gene for human von Willebrand factor. J Biol Chem 1989; 264: 19514-19527.
  • 10 Gaucher C, Jorieux S, Mercier B. et al. The “Normandy” variant of von Willebrand disease: characterization of a point mutation in the von Willebrand factor gene. Blood 1991; 77: 1937-1941.
  • 11 Schneppenheim R, Budde U, Krey S. et al. Results of a screening for von Willebrand disease type 2N in patients with suspected haemophilia A or von Willebrand disease type 1. Thromb Haemost 1996; 76: 598-602.
  • 12 Mancuso DJ, Kroner PA, Christopherson PA. et al. Type 2M:Milwaukee-1 von Willebrand disease: an in-frame deletion in the Cys509-Cys695 loop of the von Willebrand factor A1 domain causes deficient binding of von Willebrand factor to platelets. Blood 1996; 88: 2559-2568.
  • 13 Meyer D, Fressinaud E, Gaucher C. et al. Gene defects in 150 unrelated French cases with type 2 von Willebrand disease: from the patient to the gene. INSERM Network on Molecular Abnormalities in von Willebrand Disease. Thromb Haemost 1997; 78: 451-456.
  • 14 Eikenboom J, Hilbert L, Ribba AS. et al. Expression of 14 von Willebrand factor mutations identified in patients with type 1 von Willebrand disease from the MCMDM-1VWD study. J Thromb Haemost 2009; 07: 1304-1312.
  • 15 Ribba AS, Loisel I, Lavergne JM. et al. Ser968Thr mutation within the A3 domain of von Willebrand factor (VWF) in two related patients leads to a defective binding of VWF to collagen. Thromb Haemost 2001; 86: 848-854.
  • 16 Schneppenheim R, Obser T, Drewke E. et al. Isolated molecular defects of von Willebrand factor binding to collagen do not correlate with bleeding symptoms. Blood 2001; 98 (Suppl) 165.
  • 17 Sadler JE, Budde U, Eikenboom JC. et al. Update on the pathophysiology and classification of von Willebrand disease: a report of the Subcommittee on von Willebrand Factor. J Thromb Haemost 2006; 04: 2103-2114.
  • 18 Schneppenheim R, Brassard J, Krey S. et al. Defective dimerization of von Willebrand factor subunits due to a Cys →Arg mutation in type IID von Willebrand disease. Proc Natl Acad Sci USA 1996; 93: 3581-3586.
  • 19 Gaucher C, Dieval J, Mazurier C. Characterization of von Willebrand factor gene defects in two unrelated patients with type IIC von Willebrand disease. Blood 1994; 84: 1024-1030.
  • 20 Schneppenheim R, Thomas KB, Krey S. et al. Identification of a candidate missense mutation in a family with von Willebrand disease type IIC. Hum Genet 1995; 95: 681-686.
  • 21 Schneppenheim R, Michiels JJ, Obser T. et al. A cluster of mutations in the D3 domain of von Willebrand factor correlates with a distinct subgroup of von Willebrand disease: type 2A/IIE. Blood 2010; 115: 4894-4901.
  • 22 Zimmerman TS, Dent JA, Ruggeri ZM. et al. Subunit composition of plasma von Willebrand factor. Cleavage is present in normal individuals, increased in IIA and IIB von Willebrand disease, but minimal in variants with aberrant structure of individual oligomers (types IIC, IID, and IIE). J Clin Invest 1986; 77: 947-951.
  • 23 Dent JA, Berkowitz SD, Ware J. et al. Identification of a cleavage site directing the immunochemical detection of molecular abnormalities in type IIA von Willebrand factor. Proc Natl Acad Sci USA 1990; 87: 6306-6310.
  • 24 Hassenpflug WA, Budde U, Obser T. et al. Impact of mutations in the von Willebrand factor A2 domain on ADAMTS13-dependent proteolysis. Blood 2006; 107: 2339-2345.
  • 25 Moake JL, Rudy CK, Troll JH. et al. Unusually large plasma factor VIII:von Willebrand factor multimers in chronic relapsing thrombotic thrombocytopenic purpura. N Engl J Med 1982; 307: 1432-1435.
  • 26 Furlan M, Robles R, Lämmle B. Partial purification and characterization of a protease from human plasma cleaving von Willebrand factor to fragments produced by in vivo proteolysis. Blood 1996; 87: 4223-4234.
  • 27 Tsai HM. Physiologic cleavage of von Willebrand factor by a plasma protease is dependent on its conformation and requires calcium ion. Blood 1996; 87: 4235-4244.
  • 28 Gerritsen HE, Robles R, Lämmle B. et al. Partial amino acid sequence of purified von Willebrand factor-cleaving protease. Blood 2001; 98: 1654-1661.
  • 29 Levy GG, Nichols WC, Lian EC. et al. Mutations in a member of the ADAMTS gene family cause thrombotic thrombocytopenic purpura. Nature 2001; 413: 488-494.
  • 30 Kokame K, Matsumoto M, Soejima K. et al. Mutations and common polymorphisms in ADAMTS13 gene responsible for von Willebrand factor-cleaving protease activity. Proc Natl Acad Sci USA 2002; 99: 11902-11907.
  • 31 Schneppenheim R, Budde U, Oyen F. et al. von Willebrand factor cleaving protease and ADAMTS13 mutations in childhood TTP. Blood 2003; 101: 1845-1850.
  • 32 Gao W, Anderson PJ, Majerus EM. et al. Exosite interactions contribute to tension-induced cleavage of von Willebrand factor by the antithrombotic ADAMTS13 metalloprotease. Proc Natl Acad Sci USA 2006; 103: 19099-190104.
  • 33 Baldauf C, Schneppenheim R, Stacklies W. et al. Shear-induced unfolding activates von Willebrand factor A2 domain for proteolysis. J Thromb Haemost 2009; 07: 2096-2105.
  • 34 Ginsburg D, Konkle BA, Gill JC. et al. Molecular basis of human von Willebrand disease: analysis of platelet von Willebrand factor mRNA. Proc Natl Acad Sci USA 1989; 86: 3723-3727.
  • 35 Sutherland JJ, O’Brien LA, Lillicrap D. et al. Molecular modeling of the von Willebrand factor A2 Domain and the effects of associated type 2A von Willebrand disease mutations. J Mol Model 2004; 10: 259-270.
  • 36 Ruggeri ZM, Pareti FI, Mannucci PM. et al. Heightened interaction between platelets and factor VIII/von Willebrand factor in a new subtype of von Willebrand’s disease. N Engl J Med 1980; 302: 1047-1051.
  • 37 Ware J, Dent JA, Azuma H. et al. Identification of a point mutation in type IIB von Willebrand disease illustrating the regulation of von Willebrand factor affinity for the platelet membrane glycoprotein IbIX receptor. Proc Natl Acad Sci USA 1991; 88: 2946-2950.
  • 38 Kremer JAHovinga, Vesely SK, Terrell DR. et al. Survival and relapse in patients with thrombotic thrombocytopenic pupura. Blood 2010; 115: 1500-1511.
  • 39 Schneppenheim R, Kremer JAHovinga, Becker T. et al. A common origin of the 4143insA ADAMTS13 mutation. Thromb Haemost 2006; 96: 3-6.
  • 40 Hanson E, Jood K, Karlsson S. et al. Plasma levels of von Willebrand factor in the etiologic subtypes of ischemic stroke. J Thromb Haemost 2011; 09: 275-281.
  • 41 Van Schie MC, de Maat MP, Isaacs A. et al. Variation in the von Willebrand factor gene is associated with von Willebrand factor levels and with the risk for cardiovascular disease. Blood 2011; 117: 1393-1399.
  • 42 Stoll G, Kleinschnitz C, Nieswandt B. The role of glycoprotein Ibalpha and von Willebrand factor interaction in stroke development. Hämostaseologie 2010; 30: 136-138.
  • 43 Zhao BQ, Chauhan AK, Canault M. et al. von Willebrand factor-cleaving protease ADAMTS13 reduces ischemic brain injury in experimental stroke. Blood 2009; 114: 3329-3334.
  • 44 Bongers TN, de Bruijne EL, Dippel DW. et al. Lower levels of ADAMTS13 are associated with cardiovascular disease in young patients. Atherosclerosis 2009; 207: 250-254.
  • 45 Kleinschnitz C, De Meyer SF, Schwarz T. et al. Deficiency of von Willebrand factor protects mice from ischemic stroke. Blood 2009; 113: 3600-3603.
  • 46 Paulinska P, Spiel A, Jilma B. Role of von Willebrand factor in vascular disease. Hämostaseologie 2009; 29: 32-38.
  • 47 Cooney MT, Dudina AL, O’Callaghan P. et al. Von Willebrand Factor in CHD and stroke: relationships and therapeutic implications. Curr Treat Options Cardiovasc Med 2007; 9: 180-190