Nervenheilkunde 2020; 39(01/02): 19-25
DOI: 10.1055/a-1036-4206
Schwerpunkt
© Georg Thieme Verlag KG Stuttgart · New York

Präklinische Einblicke in das Zusammenspiel von Mikrobiota und Verhalten

Preclinical insight into the complex interplay of gut microbiota and behavior
Anna K. Schmidtner
1   Universität Regensburg, Fakultät für Biologie und vorklinische Medizin, Institut für Zoologie, Lehrstuhl für Tierphysiologie und Neurobiologie
,
Inga D. Neumann
1   Universität Regensburg, Fakultät für Biologie und vorklinische Medizin, Institut für Zoologie, Lehrstuhl für Tierphysiologie und Neurobiologie
› Author Affiliations
Further Information

Publication History

Publication Date:
12 February 2020 (online)

ZUSAMMENFASSUNG

Psychische Krankheiten treten heutzutage verstärkt auf, allerdings sind die Grundlagen und Mechanismen der Entwicklung weitestgehend unerforscht. Trotz einer erfolgreichen Behandlung bei den meisten Patienten bleiben 30 % behandlungsresistent, daher evaluiert die Forschung fortlaufend alternative Behandlungsmöglichkeiten. Neue Ergebnisse in Nagern zeigen eine veränderte Zusammensetzung der Darmmikrobiota in Tiermodellen für depressionsähnliches Verhalten und eine Adaptation des Verhaltens bei einer Manipulation derselben. Auch in depressiven Patienten ist eine Veränderung der Darmmikrobiota-Komposition zu beobachten. Die Mikrobiota-Darm-Hirn-Achse beschreibt die komplexe Kommunikation zwischen Darm und Gehirn durch verschiedenste Systeme. Eine Dysfunktion der Achsenkomponenten scheint zur Entwicklung psychischer Krankheiten beizutragen und kann daher als neue Behandlungsmöglichkeit dienen. In der vorliegenden Übersichtsarbeit demonstrieren wir Nachweise einer Funktion der Mikrobiota-Darm-Hirn-Achse in der Regulation von tierischem Verhalten und diskutieren den potenziellen Effekt dieser Regulation als Nutzen für die pharmakologische Intervention in Patienten.

ABSTRACT

Psychiatric disorders are a huge burden for society and the leading cause for disability worldwide; however, the underlying mechanisms remain largely unknown. Despite a successful treatment in the majority of patients, about 30 % remain treatment-resistant. Thus, modern research focuses on the evaluation of novel therapeutic targets, like the microbiota-gut-brain axis. Recent studies in rodents show evidence for the impact of gut microbiota on behaviour as manipulation of gut microbiota changes behaviour. Interestingly, in both animal models for psychiatric disorders and patients suffering from major depressive disorder, an altered microbiota composition was found. An abnormal functioning of the systems involved in the microbiota-gut-brain axis might contribute to the development of psychiatric disorders and therefore represents a promising target for new treatment options. The current review gives a short overview about the current knowledge regarding the impact of the microbiota-gut-brain axis in the regulation of rodent behaviour and aims to discuss the translational impact for pharmacological intervention in patients with psychiatric disorders.

 
  • Literatur

  • 1 American Psychiatric Association Diagnostic and Statistical Manual of Mental Disorders (5th ed.). Arlington, VA: American Psychiatric Publishing; 2013: 970
  • 2 Graubner B. ICD-10-GM, 2018 Systematisches Verzeichnis: Internationale statistische Klassifikation der Krankheiten und verwandter Gesundheitsprobleme. Version 20. Berlin: Deutscher Ärzte-Verlag; 2018: 794
  • 3 World Health Organization. Depression and other common mental disorders: global health
  • 4 World Health Organization. Depression Fact sheet. World Health Organization 2012
  • 5 Neumann ID, Slattery DA. Oxytocin in general Anxiety and social fear: a translational approach. Biol Psychiatry 2016; 79 (03) 213-21
  • 6 Kessler RC, Wang PS. The descriptive epidemiology of commonly occurring mental disorders in the United States. Annu Rev Public Health 2008; 29 (01) 115-29
  • 7 Fuller-Thomson E, Sulman J. Depression and inflammatory bowel disease: finding from two nationally representative Canadian surveys. Inflamm Bowel Dis 2006; 12 (08) 697-707
  • 8 Slyepchenko A, Maes M, Jacka FN. et al Gut microbiota, bacterial translocation, and interactions with diet: pathophysiological links between major depressive disorder and non-communicable medical comorbidities. Psychother Psychosom 2016; 86 (01) 31-46
  • 9 Walker JR, Ediger JP, Graff LA. et al The Manitoba IBD cohort study: a population-based study of the prevalence of lifetime and 12-month anxiety and mood disorders. Am J Gastroenterol 2008; 103: 1989-97
  • 10 Whitehead WE, Palsson O, Jones KR. Systematic review of the comorbidity of irritable bowel syndrome with other disorders: what are the causes and implications?. Gastroenterology 2002; 122 (04) 1140-56
  • 11 Weibert E, Stengel A. Die Rolle der Psychotherapie beim Reizdarmsyndrom. Psychother Psychosom Med Psychol 2019 epud ahead of print
  • 12 Dash S, Clarke G, Berk M. et al The gut microbiome and diet in psychiatry: focus on depression. Curr Opin Psychiatry 2015; 26: 1-6
  • 13 Gururajan A, Clarke G, Dinan TG. et al Molecular biomarkers of depression. Neurosci Biobehav Rev 2016; 64: 101-33
  • 14 Ferrier IN. Treatment of major depression: is improvement enough?. J Clin Psychiatry 1999; 60 (Suppl. 06) 10-4
  • 15 Hennings JM, Owashi T, Binder EB. et al Clinical characteristics and treatment outcome in a representative sample of depressed inpatients – Findings from the Munich Antidepressant Response Signature (MARS) project. J Psychiatr Res 2009; 43 (03) 215-29
  • 16 Dinan TG, Cryan JF. The impact of gut microbiota on brain and behaviour. Implications for psychiatry 2015; 18 (06) 552-8
  • 17 Cryan JF, Dinan TG. Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci 2012; 13 (10) 701-12
  • 18 Dantzer R, Kelley KW. Twenty years of research on cytokine-induced sickness behavior. Brain Behav Immun 2007; 21 (02) 153-60
  • 19 Silverman MN, Pearce BD, Biron CA. et al Immune modulation of the hypothalamic-pituitary-adrenal (HPA) axis during viral infection. Viral Immunol 2005; 18 (01) 41-78
  • 20 Henry CJ, Huang Y, Wynne A. et al Minocycline attenuates lipopolysaccharide (LPS)-induced neuroinflammation, sickness behavior, and anhedonia. J Neuroinflammation 2008; 5: 15
  • 21 Zheng L-S, Kaneko N, Sawamoto K. Minocycline treatment ameliorates interferon-alpha-induced neurogenic defects and depression-like behaviors in mice. Front Cell Neurosci 2015; 9: 1-10
  • 22 Bercik P, Park AJ, Sinclair D. et al The anxiolytic effect of Bifidobacterium longum NCC3001 involves vagal pathways for gut-brain communication. Neurogastroenterol Motil 2011; 23 (12) 1132-9
  • 23 Bravo JA, Forsythe P, Chew MV. et al Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci USA 2011; 108 (38) 16050-5
  • 24 Bercik P, Verdu EF, Foster JA. et al Chronic Gastrointestinal Inflammation Induces Anxiety-Like Behavior and Alters Central Nervous System Biochemistry in Mice. Gastroenterology 2010 139 2102-12
  • 25 Sender R, Fuchs S, Milo R. Are we really vastly outnumbered? Revisiting the ratio of bacterial to host cells in humans. Cell 2016; 164 (03) 337-40
  • 26 Frank DN, St Amand AL, Feldman RA. et al Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci USA 2007; 104 (34) 13780-5
  • 27 Gill SR. Metagenomic analysis of the human distal gut microbiome. Sci 2006; 312 5778 1355-9
  • 28 Nagpal R, Wang S, Solberg Woods LC. et al Comparative microbiome signatures and short-chain fatty acids in mouse, rat, non-human primate and human feces. Front Microbiol 2018; 9: 2897
  • 29 Donaldson GP, Lee SM, Mazmanian SK. Gut biogeography of the bacterial microbiota. Nat Rev Microbiol 2015; 14 (01) 20-32
  • 30 Reber SO, Peters S, Slattery DA. et al Mucosal immunosuppression and epithelial barrier defects are key events in murine psychosocial stress-induced colitis. Brain Behav Immun 2011; 25 (06) 1153-61
  • 31 Canani RB, Di Costanzo M, Leone L. et al Potential beneficial effects of butyrate in intestinal and extraintestinal diseases. World J Gastroenterol 2011; 17 (12) 1519-28
  • 32 den Besten G, van Eunen K, Groen AK. et al The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res 2013; 54 (09) 2325-40
  • 33 Singh N, Gurav A, Sivaprakasam S. et al Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis. Immunity 2014; 40 (01) 128-39
  • 34 Kim CH, Park J, Kim M. Gut microbiota-derived short-chain fatty acids, T cells, and inflammation. Immune Netw 2014; 14 (06) 277-88
  • 35 Stilling RM, van de Wouw M, Clarke G. et al The neuropharmacology of butyrate: the bread and butter of the microbiota-gut-brain axis?. Neurochem Int 2016; 99: 110-32
  • 36 Sudo N, Chida Y, Aiba Y. et al Postnatal microbial colonization programs the hypothalamic – pituitary – adrenal system for stress response in mice. J Physiol 2004; 558: 263-75
  • 37 Clarke G, Grenham S, Scully P. et al The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Mol Psychiatry 2013; 18 (06) 666-73
  • 38 Neufeld KM, Kang N, Bienenstock J. Reduced anxiety-like behavior and central neurochemical change in germ-free mice. Neurogastroenterol Motil 2011; 23: 255-65
  • 39 Crumeyrolle-Arias M, Jaglin M, Bruneau A. et al Absence of the gut microbiota enhances anxiety-like behavior and neuroendocrine response to acute stress in rats. Psychoneuroendocrinology 2014; 42: 207-17
  • 40 Heijtz RD, Wang S, Anuar F. et al Normal gut microbiota modulates brain development and behavior. Proc Natl Acad Sci USA 2011; 108 (07) 3047-52
  • 41 Luczynski P, Neufeld KM, Oriach CS. et al Growing up in a bubble: using germ-free animals to assess the influence of the gut microbiota on brain and behavior. Int J Neuropsychopharmacol 2016; 19 (08) 1-17
  • 42 Zheng P, Zeng B, Zhou C. et al Gut microbiome remodeling induces depressive-like behaviors through a pathway mediated by the host’s metabolism. Mol Psychiatry 2016; 21 (06) 786-96
  • 43 Arentsen T, Raith H, Qian Y. et al Host microbiota modulates development of social preference in mice. Microb Ecol Health Dis 2015; 26: 29719
  • 44 Desbonnet L, Clarke G, Shanahan F. et al Microbiota is essential for social development in the mouse. Mol Psychiatry 2014; 19 (02) 146-8
  • 45 Bercik P, Denou E, Collins J. et al The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice. Gastroenterology 2011 141 599-609
  • 46 Erny D, Lena A, Angelis H De. et al Host microbiota constantly control maturation and function of microglia in the CNS. Nat Neurosci 2015; 18 (07) 965-77
  • 47 Schmidtner AK, Slattery DA, Gläsner J. et al Minocycline alters behavior, microglia and the gut microbiome in a trait-anxiety-dependent manner. Transl Psychiatry 2019; 9: 223
  • 48 Park AJ, Collins J, Blennerhassett PA. et al Altered colonic function and microbiota profile in a mouse model of chronic depression. Neurogastroenterol Motil 2013; 25 (09) 733-e575
  • 49 Wong M-L, Inserra A, Lewis MD. et al Inflammasome signaling affects anxiety- and depressive-like behavior and gut microbiome composition. Mol Psychiatry 2016; 21 (06) 797-805
  • 50 Langgartner D, Peterlik D, Foertsch S. et al Individual differences in stress vulnerability: the role of gut pathobionts in stress-induced colitis. Brain Behav Immun 2017; 64: 23-32
  • 51 Reber SO, Birkeneder L, Veenema AH. et al Adrenal insufficiency and colonic inflammation after a novel chronic psycho-social stress paradigm in mice: implications and mechanisms. Endocrinology 2007; 148 (02) 670-82
  • 52 Kelly JR, Kennedy PJ, Cryan JF. et al Breaking down the barriers: the gut microbiome, intestinal permeability and stress-related psychiatric disorders. Front Cell Neurosci 2015; 9: 392
  • 53 Jernberg C, Löfmark S, Edlund C. et al Long-term ecological impacts of antibiotic administration on the human intestinal microbiota. ISME J 2007; 1 (01) 56-66
  • 54 Ferrer M, Méndez-García C, Rojo D. et al Antibiotic use and microbiome function. Biochem Pharmacol 2016; 134: 114-26
  • 55 McFarland L V. Meta-analysis of probiotics for the prevention of antibiotic associated diarrhea and the treatment of Clostridium difficile disease. Am J Gastroenterol 2006; 101 (04) 812-22
  • 56 Brandl K, Plitas G, Mihu CN. et al Vancomycin-resistant enterococci exploit antibiotic-induced innate immune deficits. Nature 2009; 455 7214 804-7
  • 57 Lichtman JS, Ferreyra JA, Ng KM. et al Host-microbiota interactions in the pathogenesis of antibiotic-associated diseases. Cell Rep 2016; 14 (05) 1049-61
  • 58 Bolte ER. Autism and clostridium tetani. Med Hypotheses 1998; 51 (02) 133-44
  • 59 Desbonnet L, Clarke G, Traplin A. et al Gut microbiota depletion from early adolescence in mice: Implications for brain and behaviour. Brain Behav Immun 2015; 48: 165-73
  • 60 Griffin MO, Fricovsky E, Ceballos G. et al Tetracyclines: a pleitropic family of compounds with promising therapeutic properties. Review of the literature. Am J Physiol – Cell Physiol 2010; 299 (03) C539-48
  • 61 Mello B, Monte A, Soczynska J. et al Effects of doxycycline on depressive-like behavior in mice after lipopolysaccharide (LPS) administration. J Psychiatr Res 2013; 47 (10) 1521-9
  • 62 Arakawa S, Shirayama Y, Fujita Y. et al Minocycline produced antidepressant-like effects on the learned helplessness rats with alterations in levels of monoamine in the amygdala and no changes in BDNF levels in the hippocampus at baseline. Pharmacol Biochem Behav 2012; 100 (03) 601-6
  • 63 Wang HT, Huang FL, Hu ZL. et al Early-life social isolation-induced depressive-like behavior in rats results in microglial activation and neuronal histone methylation that are mitigated by minocycline. Neurotox Res 2017; 31 (04) 505-20
  • 64 Xu N, Tang XH, Pan W. et al Spared nerve injury increases the expression of microglia M1 markers in the prefrontal cortex of rats and provokes depression-like behaviors. Front Neurosci 2017; 11: 1-12
  • 65 Burke NN, Kerr DM, Moriarty O. et al Minocycline modulates neuropathic pain behaviour and cortical M1-M2 microglial gene expression in a rat model of depression. Brain Behav Immun 2014; 42: 147-56
  • 66 Neigh GN, Karelina K, Glasper ER. et al Anxiety following cardiac arrest/CPR: exacerbated by stress and prevented by minocycline. Stroke 2009; 40 (11) 3601-7
  • 67 Kreisel T, Frank MG, Licht T. et al Dynamic microglial alterations underlie stress-induced depressive-like behavior and suppressed neurogenesis. Mol Psychiatry 2014; 19 (06) 699-709
  • 68 Chen G, Luo X, Qadri MY. et al Sex-dependent glial signaling in pathological pain: distinct roles of spinal microglia and astrocytes. Neurosci Bull 2018; 34 (01) 98-108
  • 69 Fernandez-Zafra T, Gao T. et al Exploring the transcriptome of resident spinal microglia after collagen antibody–induced arthritis. Pain 2018; 160 (01) 224-36
  • 70 Kelly DL, Sullivan KM, McEvoy JP. et al Adjunctive minocycline in clozapine-treated schizophrenia patients with persistent symptoms. J Clin Psychopharmacol 2015; 35 (04) 374-81
  • 71 Levkovitz Y, Mendlovich S, Riwkes S. et al A double-blind, randomized study of minocycline for the treatment of negative and cognitive symptoms in early-phase schizophrenia. J Clin Psychiatry 2010; 71 (02) 138-49
  • 72 Deakin B, Suckling J, Barnes TRE. et al The benefit of minocycline on negative symptoms of schizophrenia in patients with recent-onset psychosis (BeneMin): a randomised, double-blind, placebo-controlled trial. The Lancet Psychiatry 2018; 5 (11) 885-94
  • 73 Ghaleiha A, Alikhani R, Kazemi M-R. et al Minocycline as adjunctive treatment to risperidone in children with autistic disorder: a randomized, double-blind placebo-controlled trial. J Child Adolesc Psychopharmacol 2016; 26 (09) 784-91
  • 74 Soczynska JK, Kennedy SH, Alsuwaidan M. et al A pilot, open-label, 8-week study evaluating the efficacy, safety and tolerability of adjunctive minocycline for the treatment of bipolar I/II depression. Bipolar Disord 2017; 19 (03) 198-213
  • 75 Husain MI, Chaudhry IB, Husain N. et al Minocycline as an adjunct for treatment-resistant depressive symptoms: a pilot randomised placebo-controlled trial. J Psychopharmacol 2017; 31 (09) 1166-75
  • 76 Miyaoka T, Wake R, Furuya M. et al Minocycline as adjunctive therapy for patients with unipolar psychotic depression: an open-label study. Prog Neuropsychopharmacol Biol Psychiatry 2012; 37 (02) 222-6
  • 77 Rosenblat JD, McIntyre RS. Efficacy and tolerability of minocycline for depression: a systematic review and meta-analysis of clinical trials. J Affect Disord 2017; 227: 219-25
  • 78 Molina-Hernández M, Téllez-Alcántara NP, Pérez-García J. et al Desipramine or glutamate antagonists synergized the antidepressant-like actions of intra-nucleus accumbens infusions of minocycline in male Wistar rats. Prog Neuropsychopharmacol Biol Psychiatry 2008; 32 (07) 1660-6
  • 79 Molina-Hernández M, Tellez-Alcántara NP, Pérez-García J. et al Antidepressant-like actions of minocycline combined with several glutamate antagonists. Prog Neuropsychopharmacol Biol Psychiatry 2008; 32 (02) 380-6
  • 80 Jiang H, Ling Z, Zhang Y. et al Altered fecal microbiota composition in patients with major depressive disorder. Brain Behav Immun 2015; 48: 186-94
  • 81 Kelly JR, Borre Y, O’ Brien C. et al Transferring the blues: depression-associated gut microbiota induces neurobehavioural changes in the rat. J Psychiatr Res 2016; 82: 109-18
  • 82 Peter J, Fournier C, Durdevic M. et al A microbial signature of psychological distress in irritable bowel syndrome. Psychosom Med 2018; 80 (08) 698-709
  • 83 Foster JA, McVey Neufeld K-A. Gut-brain axis: how the microbiome influences anxiety and depression. Trends Neurosci 2013; 36 (05) 305-12
  • 84 Mayer EA, Tillisch K, Gupta A. Gut/brain axis and the microbiota. J Clin Invest 2015; 125 (03) 926-38
  • 85 Desbonnet L, Garrett L, Clarke G. et al Effects of the probiotic Bifidobacterium infantis in the maternal separation model of depression. Neuroscience 2010; 170 (04) 1179-88
  • 86 Ait-Belgnaoui A, Durand H, Cartier C. et al Prevention of gut leakiness by a probiotic treatment leads to attenuated HPA response to an acute psychological stress in rats. Psychoneuroendocrinology 2012; 37 (11) 1885-95
  • 87 Ait-Belgnaoui A, Colom A, Braniste V. et al Probiotic gut effect prevents the chronic psychological stress-induced brain activity abnormality in mice. Neurogastroenterol Motil 2014; 26 (04) 510-20
  • 88 Dinan TG, Stanton C, Cryan JF. Psychobiotics: a novel class of psychotropic. Biol Psychiatry 2013; 74 (10) 720-6
  • 89 Dinan TG, Cryan JF. Melancholic microbes: a link between gut microbiota and depression?. Neurogastroenterol Motil 2013; 25: 713-9
  • 90 Romijn AR, Rucklidge JJ. Systematic review of evidence to support the theory of psychobiotics. Nutr Rev 2015; 73 (10) 675-93
  • 91 Raison CL, Rutherford RE, Woolwine BJ. et al A randomized controlled trial of the tumor necrosis factor- alpha antagonist infliximab in treatment resistant depression: role of baseline inflammatory biomarkers. JAMA Psychiatry 2013; 70 (01) 31-41
  • 92 Kappelmann N, Lewis G, Dantzer R. et al Antidepressant activity of anti-cytokine treatment: a systematic review and meta-analysis of clinical trials of chronic inflammatory conditions. Mol Psychiatry 2018; 23 (02) 335-43
  • 93 Köhler O E, Benros M, Nordentoft M. et al Effect of anti-inflammatory treatment on depression, depressive symptoms, and adverse effects a systematic review and meta-analysis of randomized clinical trials. JAMA Psychiatry 2014; 71 (12) 1381-91
  • 94 Müller N, Schwarz MJ, Dehning S. et al The cyclooxygenase-2 inhibitor celecoxib has therapeutic effects in major depression: results of a double-blind, randomized, placebo controlled, add-on pilot study to reboxetine. Mol Psychiat 2006; 11 (07) 680-4