Handchir Mikrochir Plast Chir 2020; 52(04): 316-324
DOI: 10.1055/a-1167-3089
Originalarbeit

Hyperspektralimaging zum postoperativen Lappenmonitoring von lokoregionären Lappenplastiken.

Hyperspectral imaging for postoperative flap monitoring of pedicled flaps
BG Klinikum Bergmannstrost Halle Handchirurgie, Plastische Chirurgie, Brandverletztenzentrum
,
Jörg Marotz
BG Klinikum Bergmannstrost Halle Handchirurgie, Plastische Chirurgie, Brandverletztenzentrum
,
Anna Stukenberg
BG Klinikum Bergmannstrost Halle Handchirurgie, Plastische Chirurgie, Brandverletztenzentrum
,
Georg Reumuth
BG Klinikum Bergmannstrost Halle Handchirurgie, Plastische Chirurgie, Brandverletztenzentrum
,
BG Klinikum Bergmannstrost Halle Handchirurgie, Plastische Chirurgie, Brandverletztenzentrum
,
Frank Siemers
BG Klinikum Bergmannstrost Halle Handchirurgie, Plastische Chirurgie, Brandverletztenzentrum
› Author Affiliations

Zusammenfassung

Hintergrund Seit der Erstbeschreibung einer lokoregionären Lappenplastik zur Nasenrekonstruktion im 6. Jahrhundert v. Chr. durch den indischen Arzt Sushruta Samhita sind diese ein fester Bestandteil in der Wiederherstellungschirurgie geworden. Neben der konsequenten Weiterentwicklung chirurgischer Operationsmethoden wurden die zu Grunde liegenden physikalischen Messmethoden des Lappenmonitoring in den letzten Dekaden stetig weiterentwickelt. Das Hyperspektralimaging (HSI) stellt eine neue quantitative Messmethode zur Beurteilung der Gewebeperfusion dar.

Ziel Das Ziel dieser Arbeit ist die Evaluation des HSI als Monitoringverfahren nach lokoregionärer Defektdeckung.

Patienten und Methode Bei insgesamt 16 Patienten wurde nach gefäßgestieltem Gewebetransfer die Sauerstoffsättigung, der Hämoglobingehalt sowie der Wassergehalt von Haut, Monitorinsel und nekrotischen Lappenarealen am 1. bis 7. postoperativen Tag gemessen. Die erhobenen Daten wurden statistisch deskriptiv ausgewertet und grafisch ausgearbeitet.

Ergebnisse Das HSI zeigte einen erhöhten Hämoglobingehalt, eine Abnahme der Sauerstoffsättigung sowie des Wassergehaltes in den nekrotischen Lappenarealen im Vergleich zur vitalen Monitorinsel und zur gesunden Haut. Monitorinsel und vitale Hautareale wiesen eine nahezu identische Werteverteilung auf.

Schlussfolgerung HSI erlaubt die sichere, kontaktfreie und sofortige Bestimmung der Gewebeperfusion von transferierten Gewebearealen bei Patienten nach lokoregionärer Defektdeckung. Daher erscheint die Verwendung von HSI im Rahmen des postoperativen Lappenmonitorings sinnvoll.

Abstract

Background Since pedicle flaps were first described by the Indian physician Sushruta Samhita in the 6th century B. C., they have become an integral part of reconstructive surgery. As more and more research has been conducted into the underlying physical principles, flap monitoring has developed steadily in the last few decades. Hyperspectral Imaging (HSI) is a new quantitative measuring method for assessing the perfusion of the underlying tissue.

Objective This study aims to evaluate HSI as a monitoring method for pedicle flaps.

Patients and Methods In 16 patients who had undergone reconstructive surgery, oxygen saturation, haemoglobin and water concentration of the locoregional flap, necrotic flap areas as well as intact skin were measured on postoperative days 1 to 7. Subsequently, the data were statistically described and graphically illustrated.

Results HSI revealed increased haemoglobin concentration and decreased oxygen and water concentration in necrotic flap areas compared with the monitor island and healthy skin. The distribution of the values collected from the vital skin areas and the monitor island was almost identical.

Conclusion HSI allows for safe, immediate, non-contact measurement of tissue perfusion of transferred tissue areas in patients after pedicle flap surgery. The use of HSI may improve postoperative flap monitoring.



Publication History

Received: 19 October 2019

Accepted: 23 April 2020

Article published online:
21 August 2020

© Georg Thieme Verlag KG
Stuttgart · New York

 
  • Literaturverzeichnis

  • 1 Krupp S, Rennekampff H-O. Plastische Chirurgie: Klinik und Praxis. Neuaufl. Aufl.. Landsberg am Lech: ecomed; 2005
  • 2 Harder Y, Amon M, Laschke MW. et al. An old dream revitalised: preconditioning strategies to protect surgical flaps from critical ischaemia and ischaemia-reperfusion injury. J Plast Reconstr Aesthet Surg 2008; 61: 503-511
  • 3 Moran SL, Serletti JM. Outcome Comparison between Free and Pedicled TRAM Flap Breast Reconstruction in the Obese Patient. Plast Reconstr Surg 2001; 108: 1954-1960
  • 4 Tanaka N, Yamaguchi A, Ogi K. et al. Sternocleidomastoid myocutaneous flap for intraoral reconstruction after resection of oral squamous cell carcinoma. J Oral Maxillofac Surg 2003; 61: 1179-1183
  • 5 Lineaweaver WC, Lei M-P, Mustain W. et al. Vascular Endothelium Growth Factor, Surgical Delay, and Skin Flap Survival. Ann Surg 2004; 239: 866-875
  • 6 Chen K-T, Mardini S, Chuang DC-C. et al. Timing of Presentation of the First Signs of Vascular Compromise Dictates the Salvage Outcome of Free Flap Transfers. Plast Reconstr Surg 2007; 120: 187-195
  • 7 Smit JM, Zeebregts CJ, Acosta R. et al. Advancements in Free Flap Monitoring in the Last Decade: A Critical Review. Plast Reconstr Surg 2010; 125: 177-185
  • 8 Holmer A, Tetschke F, Marotz J. et al. Oxygenation and perfusion monitoring with a hyperspectral camera system for chemical based tissue analysis of skin and organs. Physiol Meas 2016; 37: 2064-2078
  • 9 Cornejo A, Rodriguez T, Steigelman M. et al. The Use of Visible Light Spectroscopy to Measure Tissue Oxygenation in Free Flap Reconstruction. J Reconstr Microsurg 2011; 27: 397-402
  • 10 Sowa MG, Kuo W-C, Ko AC-T. et al. Review of near-infrared methods for wound assessment. Biomed Opt 2016; 21: 091304
  • 11 Chin MS, Chappell AG, Giatsidis G. et al. Hyperspectral Imaging Provides Early Prediction of Random Axial Flap Necrosis in a Preclinical Model. Plast Reconstr Surg 2017; 139: 1285e-1290e
  • 12 Duann J-R, Jan I C-, Ou-Yang M. et al. Separating spectral mixtures in hyperspectral image data using independent component analysis: validation with oral cancer tissue sections. Biomed Opt 2013; 18: 126005
  • 13 Yudovsky D, Nouvong A, Pilon L. Hyperspectral Imaging in Diabetic Foot Wound Care. J Diabetes Sci Technol 2010; 4: 1099-1113
  • 14 Kolbenschlag J, Sogorski A, Harati K. et al. Upper extremity ischemia is superior to lower extremity ischemia for remote ischemic conditioning of antero-lateral thigh cutaneous blood flow. Microsurgery 2015; 35: 211-217 DOI: 10.1002/micr.22336.
  • 15 Jöbsis FF. Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science 1977; 198: 1264-1267
  • 16 Irwin MS, Thorniley MS, Doré CJ. et al. Near infra-red spectroscopy: a non-invasive monitor of perfusion and oxygenation within the microcirculation of limbs and flaps. Br J Plast Surg 1995; 48: 14-22
  • 17 Cai Z-g, Zhang J, Zhang J-g. et al. Evaluation of near infrared spectroscopy in monitoring postoperative regional tissue oxygen saturation for fibular flaps. Journal of plastic, reconstructive & aesthetic surgery: JPRAS 2008; 61: 289-296
  • 18 Repez A, Oroszy D, Arnez ZM. Continuous postoperative monitoring of cutaneous free flaps using near infrared spectroscopy. Journal of plastic, reconstructive & aesthetic surgery: JPRAS 2008; 61: 71-77
  • 19 Keller A. A New Diagnostic Algorithm for Early Prediction of Vascular Compromise in 208 Microsurgical Flaps Using Tissue Oxygen Saturation Measurements. Ann Plas Surg 2009; 62: 538-543
  • 20 Calin MA, Parasca SV, Savastru R. et al. Characterization of burns using hyperspectral imaging technique – a preliminary study. Burns 2015; 41: 118-124 DOI: 10.1016/j.burns.2014.05.002.
  • 21 Shapey J, Xie Y, Nabavi E. et al. Intraoperative multispectral and hyperspectral label-free imaging: A systematic review of in vivo clinical studies. J Biophotonics 2019; 12: e201800455 DOI: 10.1002/jbio.201800455.
  • 22 Calin MA, Boiangiu IC, Parasca SV. et al. Blood oxygenation monitoring using hyperspectral imaging after flap surgery. Spectroscopy Letters 2017; 50: 150-155
  • 23 Klaessens JH, Nelisse M, Verdaasdonk RM. et al. Non-contact tissue perfusion and oxygenation imaging using a LED based multispectral and a thermal imaging system, first results of clinical intervention studies. In, Advanced Biomedical and Clinical Diagnostic Systems XI: International Society for Optics and Photonics. 2013: 857207
  • 24 Gioux S, Stockdale A, Oketokoun R. et al. First-in-human pilot study of a spatial frequency domain oxygenation imaging system. Biomed Opt 2011; 16: 086015