Nuklearmedizin 2021; 60(03): 240-248
DOI: 10.1055/a-1307-1923
Original Article

Inhibition of MDA-MB-231 cell proliferation by pHLIP(Var7)-P1AP and SPECT imaging of MDA-MB-231 breast cancer-bearing nude mice using 125I-pHLIP(Var7)-P1AP

Hemmung der Proliferation von MDA-MB-231-Zellen durch pHLIP (Var7)-P1AP und SPECT-Bildgebung von MDA-MB-231 Mammakarzinom-Nacktmäusen mittels 125I-pHLIP (Var7)-P1AP
Yue Hua Chen
1   Intensive Care Unit, The Affiliated Hospital of Qingdao University, Qingdao, China
,
Ming Ming Yu
2   Nuclear Medicine Department, The Affiliated Hospital of Qingdao University, Qingdao, China
,
Zhen Guang Wang
2   Nuclear Medicine Department, The Affiliated Hospital of Qingdao University, Qingdao, China
› Author Affiliations

Abstract

Aim To observe the effect of pHLIP(Var7)-P1AP on the proliferation of MDA-MB-231 triple-negative breast cancer cells and the small-animal single-photon-emission computed tomography (SPECT) imaging of breast cancer–bearing mice carrying MDA-MB-231 cells.

Methods Peptide pHLIP(Var7)-P1AP was synthesized by solid-phase peptide synthesis. The binding of fluorescently labeled pHLIP(Var7)-P1AP to MDA-MB-231 cells under various pH conditions and its effect on MDA-MB-231 cell proliferation were analyzed. pHLIP(Var7)-P1AP was labeled with 125I, and the biological distribution of 125I-pHLIP(Var7)-P1AP in the breast cancer mouse model carrying MDA-MB-231 cells as well as the outcome of small-animal SPECT imaging were evaluated.

Results pHLIP(Var7)-P1AP was successfully synthesized. Under pH 6.0, fluorescently labeled pHLIP(Var7)-P1AP had a higher binding ability to MDA-MB-231 cells and significantly inhibited the proliferation of MDA-MB-231 cells. The labeling efficiency of pHLIP(Var7)-P1AP with 125I was 33.1 ± 2.7 %, and the radiochemical purity was 98.5 ± 1.8 %. 125I-pHLIP(Var7)-P1AP showed a high concentration in tumors. Small-animal SPECT imaging showed clearly visible tumors at 4 h after injection.

Conclusions In the acidic environment, pHLIP(Var7)-P1AP can efficiently target MDA-MB-231 cells and inhibit their growth. Small-animal SPECT of 125I-pHLIP(Var7)-P1AP can clearly image tumors.

Zusammenfassung

Ziel Beobachtung der Wirkung von pHLIP (Var7)-P1AP auf die Proliferation von triple-negativen MDA-MB-231 Mammakarzinomzellen und die Einzelphotonen-Emissions-Computertomografie (SPECT) von MDA-MB-231-Zellen im Mammakarzinom-Mausmodell.

Methoden Das Peptid pHLIP (Var7)-P1AP wurde durch Festphasen-Peptidsynthese synthetisiert. Die Bindung von fluoreszenzmarkiertem pHLIP (Var7)-P1AP an MDA-MB-231-Zellen unter verschiedenen pH-Bedingungen und dessen Wirkung auf die Proliferation von MDA-MB-231-Zellen wurden analysiert. pHLIP (Var7)-P1AP wurde mit 125I markiert, und die biologische Verteilung von 125I-pHLIP (Var7)-P1AP in dem Mammakarzinom-Mausmodell, das MDA-MB-231-Zellen trägt, sowie das Ergebnis der Kleintier-SPECT-Bildgebung wurden bewertet.

Ergebnisse pHLIP (Var7)-P1AP wurde erfolgreich synthetisiert. Bei einem pH unter 6,0 hatte das fluoreszenzmarkierte pHLIP (Var7)-P1AP eine höhere Bindungsfähigkeit an MDA-MB-231-Zellen und hemmte signifikant die Proliferation von MDA-MB-231-Zellen. Die Markierungseffizienz von pHLIP (Var7)-P1AP mit 125I betrug 33,1 ± 2,7 %, und die radiochemische Reinheit betrug 98,5 ± 1,8 %. In Tumoren zeigte 125I-pHLIP (Var7)-P1AP eine hohe Konzentration. In der Kleintier-SPECT-Bildgebung zeigten sich 4 h nach Injektion deutlich sichtbare Tumoren.

Schlussfolgerungen Im sauren Milieu kann pHLIP (Var7)-P1AP effizient auf MDA-MB-231-Zellen wirken und deren Wachstum hemmen. Das Kleintier-SPECT mittels 125I-pHLIP (Var7)-P1AP kann Tumore klar abbilden.



Publication History

Received: 01 July 2020

Accepted: 09 November 2020

Article published online:
23 March 2021

© 2021. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Foulkes WD, Smith IE, Reis-Filho JS. Triple-negative breast cancer[J]. N Engl J Med 2010; 363 (20) 1938-1948
  • 2 Yang E, Boire A, Agarwal A. et al. Blockade of PAR1 signaling with cell-penetrating pepducins inhibits Akt survival pathways in breast cancer cells and suppresses tumor survival and metastasis[J]. Cancer Res 2009; 69 (15) 6223-6231
  • 3 Pathak AP, Gimi B, Glunde K. et al. Molecular and functional imaging of cancer: advances in MRI and MRS[J]. Methods Enzymol 2004; 386: 3-60
  • 4 Penet MF, Glunde K, Jacobs MA. et al. Molecular and functional MRI of the tumor microenvironment[J]. J Nucl Med 2008; 49 (05) 687-690
  • 5 Vavere AL, Biddlecombe GB, Spees WM. et al. A novel technology for the imaging of acidic prostate tumors by positron emission tomography[J]. Cancer Res 2009; 69 (10) 4510-4516
  • 6 Yu M, Chen Y, Wang Z. et al. pHLIP(Var7)-P1AP suppresses tumor cell proliferation in MDA-MB-231 triple-negative breast cancer by targeting protease activated receptor 1[J]. Breast Cancer Res Treat 2020; 180 (02) 379-384
  • 7 Zhang P, Gruber A, Kasuda S. et al. Suppression of arterial thrombosis without affecting hemostatic parameters with a cell-penetrating PAR1 pepducin. Circulation 2012; 126 (01) 83-91
  • 8 Covic L, Kuliopulos A. Protease-Activated Receptor 1 as Therapeutic Target in Breast, Lung, and Ovarian Cancer: Pepducin Approach. Int J Mol Sci 2018; 19 (08) 2237
  • 9 Dimond P, Carlson K, Bouvier M. et al. G protein-coupled receptor modulation with pepducins: moving closer to the clinic[J]. Ann N Y Acad Sci 2011; 1226: 34-49
  • 10 Fukumura D, Jain RK. Tumor microenvironment abnormalities: causes, consequences, and strategies to normalize[J]. J Cell Biochem 2007; 101 (04) 937-949
  • 11 Izumi H, Torigoe T, Ishiguchi H. et al. Cellular pH regulators: potentially promising molecular targets for cancer chemotherapy[J]. Cancer Treat Rev 2003; 29 (06) 541-549
  • 12 Cairns R, Papandreou I, Denko N. Overcoming physiologic barriers to cancer treatment by molecularly targeting the tumor microenvironment[J]. Mol Cancer Res 2006; 4 (02) 61-70
  • 13 Pathak AP, Gimi B, Glunde K. et al. Molecular and functional imaging of cancer: advances in MRI and MRS[J]. Methods Enzymol 2004; 386: 3-60
  • 14 Penet MF, Glunde K, Jacobs MA. et al. Molecular and functional MRI of the tumor microenvironment[J]. J Nucl Med 2008; 49 (05) 687-690
  • 15 Hunt JF, Earnest TN, Bousche O. et al. A biophysical study of integral membrane protein folding[J]. Biochemistry 1997; 36 (49) 15156-15176
  • 16 Reshetnyak YK, Segala M, Andreev O. et al. A monomeric membrane peptide that lives in three worlds: in solution, attached to, and inserted across lipid bilayers[J]. Biophys J 2007; 93 (07) 2363-2372
  • 17 Wijesinghe D, Engelman DM, Andreev OA. et al. Tuning a polar molecule for selective cytoplasmic delivery by a pH (Low) insertion peptide[J]. Biochemistry 2011; 50 (47) 10215-10222
  • 18 Moshnikova A, Moshnikova V, Andreev OA. et al. Antiproliferative effect of pHLIP-amanitin[J]. Biochemistry 2013; 52 (07) 1171-1178
  • 19 Karabadzhak AG, An M, Yao L. et al. pHLIP-FIRE, a cell insertion-triggered fluorescent probe for imaging tumors demonstrates targeted cargo delivery in vivo[J]. ACS Chem Biol 2014; 9 (11) 2545-2553
  • 20 Cheng CJ, Bahal R, Babar IA. et al. MicroRNA silencing for cancer therapy targeted to the tumour microenvironment[J]. Nature 2015; 518: 107-110
  • 21 Song Q, Chuan X, Chen B. et al. A smart tumor targeting peptide-drug conjugate, pHLIP-SS-DOX: synthesis and cellular uptake on MCF-7 and MCF-7/Adr cells[J]. Drug Deliv 2016; 23 (05) 1734-1746
  • 22 Burns KE, Thevenin D. Down-regulation of PAR1 activity with a pHLIP-based allosteric antagonist induces cancer cell death[J]. Biochem J 2015; 472 (03) 287-295
  • 23 Burns KE, Robinson MK, Thevenin D. Inhibition of cancer cell proliferation and breast tumor targeting of pHLIP-monomethyl auristatin E conjugates[J]. Mol Pharm 2015; 12 (04) 1250-1258
  • 24 Burns KE, McCleerey TP, Thevenin D. pH-Selective Cytotoxicity of pHLIP-Antimicrobial Peptide Conjugates[J]. Sci Rep 2016; 6: 28465
  • 25 Wyatt LC, Moshnikova A, Crawford T. et al. Peptides of pHLIP family for targeted intracellular and extracellular delivery of cargo molecules to tumors[J]. Proc Natl Acad Sci U S A 2018; 115 (12) E2811-E2818
  • 26 Andreev OA, Karabadzhak AG, Weerakkody D. et al. pH (low) insertion peptide (pHLIP) inserts across a lipid bilayer as a helix and exits by a different path[J]. Proc Natl Acad Sci USA 2010; 107 (09) 4081-4086
  • 27 Reshetnyak YK, Segala M, Andreev OA. et al. A monomeric membrane peptide that lives in three worlds: in solution, attached to, and inserted across lipid bilayers[J]. Biophys J 2007; 93 (07) 2363-2372
  • 28 Yao X, Zha Z, Ploessl K. et al. Synthesis and evaluation of novel radioiodinated PSMA targeting ligands for potential radiotherapy of prostate cancer[J]. Bioorg Med Chem 2020; 28 (05) 115319