Pharmacopsychiatry 2008; 41: S60-S69
DOI: 10.1055/s-0028-1082058
Review

© Georg Thieme Verlag KG Stuttgart · New York

Imaging Studies – Differential Action of Typical and Atypical Antipsychotics in a Network Perspective

I. Vernaleken 1 , P. Cumming 2 , G. Gründer 1
  • 1Department of Psychiatry and Psychotherapy, RWTH Aachen University, Aachen, Germany
  • 2Department of Nuclear Medicine, Ludwig Maximilian-University, München, Germany
Further Information

Publication History

Publication Date:
28 August 2008 (online)

Abstract

Dopamine transmission remains central to our understanding of neurocircuitry models of schizophrenia, and to the mechanism of action of typical antipsychotic medications, which preferentially block D2-receptors in striatum. In cerebral cortex, D2- and D1- mediated transmission modulates information processing, and tunes the activity of the cortico-striato-thalamic loops, in which dopaminergic, glutamatergic, GABAergic and serotonergic projections are integrated and interconnected. Molecular imaging techniques, especially positron emission tomography, have been used to investigate the spatial pattern of the binding properties of antipsychotic medications. We now summarize the state of development of molecular imaging, integrated into a model of schizophrenia emphasizing dysfunction of a complex loop, rather than a discrete abnormality in the basal ganglia, as had been implicitly assumed in the classic dopamine model of psychosis. Finally, hypotheses are proposed to explain differences between first- and second generation antipsychotics with respect of regional selectivity for dopamine and serotonin neurons.

References

  • 1 Aalto S, Hirvonen J, Kajander J. et al . Ketamine does not decrease striatal dopamine D2 receptor binding in man.  Psychopharmacology. 2002;  164 401-406
  • 2 Abi-Dargham A, Gil R, Krystal J. et al . Increased striatal dopamine transmission in schizophrenia: confirmation in a second cohort.  Am J Psychiat. 1998;  155 761-767
  • 3 Abi-Dargham A, Rodenhiser J, Printz D. et al . Increased baseline occupancy of D2 receptors by dopamine in schizophrenia.  Proc Natl Acad Sci USA. 2000;  97 8104-8109
  • 4 Abi-Dargham A, Mawlawi O, Lombardo I. et al . Prefrontal dopamine D1 receptors and working memory in schizophrenia.  J Neurosci. 2002;  22 3708-3719
  • 5 Agid O, Mamo D, Ginovart N. et al . Striatal vs extrastriatal dopamine D2 receptors in antipsychotic response – a double-blind PET study in schizophrenia.  Neuropsychopharmacology. 2007;  32 1209-1215
  • 6 Andreasen NC. A unitary model of schizophrenia: Bleuler's “fragmented phrene” as schizencephaly.  Arch Gen Psychiat. 1999;  56 781-787
  • 7 Bäumler H. Veränderungen des Thalamus bei Schizophrenie.  Journal für Hirnforschung. 1954;  1 156-169
  • 8 Bartlett EJ, Brodie JD, Simkowitz P. et al . Effects of haloperidol challenge on regional cerebral glucose utilization in normal human subjects.  Am J Psychiat. 1994;  151 681-686
  • 9 Bartlett EJ, Brodie JD, Simkowitz P. et al . Effect of a haloperidol challenge on regional brain metabolism in neuroleptic-responsive and nonresponsive schizophrenic patients.  Am J Psychiat. 1998;  155 337-343
  • 10 Bortolozzi A, Diaz-Mataix L, Scorza MC, Celada P, Artigas F. The activation of 5-HT receptors in prefrontal cortex enhances dopaminergic activity.  J Neurochem. 2005;  95 1597-1607
  • 11 Braus DF, Weber-Fahr W, Tost H, Ruf M, Henn FA. Sensory information processing in neuroleptic-naive first-episode schizophrenic patients: a functional magnetic resonance imaging study.  Arch Gen Psychiat. 2002;  59 696-701
  • 12 Bressan RA, Erlandsson K, Jones HM. et al . Is regionally selective D2/D3 dopamine occupancy sufficient for atypical antipsychotic effect? an in vivo quantitative [123I]epidepride SPET study of amisulpride-treated patients.  Am J Psychiat. 2003;  160 1413-1420
  • 13 Brown RM, Crane AM, Goldman PS. Regional distribution of monoamines in the cerebral cortex and subcortical structures of the rhesus monkey: concentrations and in vivo synthesis rates.  Brain Research. 1979;  168 133-150
  • 14 Buchsbaum MS, Someya T, Teng CY. et al . PET and MRI of the thalamus in never-medicated patients with schizophrenia.  Am J Psychiat. 1996;  153 191-199
  • 15 Buchsbaum MS, Christian BT, Lehrer DS. et al . D2/D3 dopamine receptor binding with [F-18]fallypride in thalamus and cortex of patients with schizophrenia.  Schizophrenia Research. 2006;  85 232-244
  • 16 Buchsbaum MS, Haznedar MM, Aronowitz J. et al . FDG-PET in never-previously medicated psychotic adolescents treated with olanzapine or haloperidol.  Schizophrenia Research. 2007;  94 293-305
  • 17 Byne W, Buchsbaum MS, Mattiace LA. et al . Postmortem assessment of thalamic nuclear volumes in subjects with schizophrenia.  Am J Psychiat. 2002;  159 59-65
  • 18 Carlsson A. Speculations on the control of mental and motor functions by dopamine-modulated cortico-striato-thalamo-cortical feedback loops.  The Mount Sinai J Med, New York. 1988;  55 6-10
  • 19 Carlsson A, Waters N, Carlsson ML. Neurotransmitter interactions in schizophrenia-therapeutic implications.  Eur Arch Psychiat Clin Neurosci. 1999;  249 ((Suppl 4)) 37-43
  • 20 Carlsson A. The neurochemical circuitry of schizophrenia.  Pharmacopsychiatry. 2006;  39 ((Suppl 1)) S10-14
  • 21 Crespo-Facorro B, Paradiso S, Andreasen NC. et al . Recalling word lists reveals “cognitive dysmetria” in schizophrenia: a positron emission tomography study.  Am J Psychiat. 1999;  156 386-392
  • 22 Csomor PA, Stadler RR, Feldon J. et al . Haloperidol differentially modulates prepulse inhibition and p50 suppression in healthy humans stratified for low and high gating levels.  Neuropsychopharmacology. 2008;  33 497-512
  • 23 Cullen TJ, Walker MA, Parkinson N. et al . A postmortem study of the mediodorsal nucleus of the thalamus in schizophrenia.  Schizophrenia Research. 2003;  60 157-166
  • 24 Deakin JF, Lees J, MacKie S. et al . Glutamate and the neural basis of the subjective effects of ketamine: a pharmaco-magnetic resonance imaging study.  Arch Gen Psychiat. 2008;  65 154-164
  • 25 Deep P, Dagher A, Sadikot A, Gjedde A, Cumming P. Stimulation of dopa decarboxylase activity in striatum of healthy human brain secondary to NMDA receptor antagonism with a low dose of amantadine.  Synapse. 1999;  34 313-318
  • 26 Pietro NC Di, Seamans JK. Dopamine and serotonin interactions in the prefrontal cortex: insights on antipsychotic drugs and their mechanism of action.  Pharmacopsychiatry. 2007;  40 ((Suppl 1)) S27-33
  • 27 Dunwiddie TV, Masino SA. The role and regulation of adenosine in the central nervous system.  Annu Rev Neurosci. 2001;  24 31-55
  • 28 Fajolles C, Boireau A, Ponchant M, Laduron PM. 3 H]RP 62203, a ligand of choice to label in vivo brain 5-HT2 receptors.  Eur J Pharmacol. 1992;  216 53-57
  • 29 Farde L, Nordström AL, Wiesel FA. et al . Positron emission tomographic analysis of central D1 and D2 dopamine receptor occupancy in patients treated with classical neuroleptics and clozapine. Relation to extrapyramidal side effects.  Arch Gen Psychiat. 1992;  49 538-544
  • 30 Frankle WG. Neuroreceptor imaging studies in schizophrenia.  Harvard Rev Psychiat. 2007;  15 212-232
  • 31 Fünfgeld E. ber histologische Unterschungen des Thalamus bei Katatonie.  Klinische Wochenschrift. 1924;  3 69-70
  • 32 Gaffan D, Parker A. Mediodorsal thalamic function in scene memory in rhesus monkeys.  Brain. 2000;  123 (( Pt 4)) 816-827
  • 33 Gallinat J, Obermayer K, Heinz A. Systems Neurobiology of the Dysfunctional Brain: Schizophrenia.  Pharmacopsychiatry. 2007;  40 S40-S44
  • 34 Gefvert O, Lundberg T, Wieselgren IM. et al . D(2) and 5HT(2A) receptor occupancy of different doses of quetiapine in schizophrenia: a PET study.  Eur Neuropsychopharmacol. 2001;  11 105-110
  • 35 Gefvert O, Lindstrom LH, Waters N. et al . Different corticostriatal patterns of L-DOPA utilization in patients with untreated schizophrenia and patients treated with classical antipsychotics or clozapine.  Scand J Psychol. 2003;  44 289-292
  • 36 Geyer MA, Krebs-Thomson K, Braff DL, Swerdlow NR. Pharmacological studies of prepulse inhibition models of sensorimotor gating deficits in schizophrenia: a decade in review.  Psychopharmacology. 2001;  156 117-154
  • 37 Goldsmith SK, Shapiro RM, Joyce JN. Disrupted pattern of D2 dopamine receptors in the temporal lobe in schizophrenia. A postmortem study.  Arch Gen Psychiat. 1997;  54 649-658
  • 38 Gründer G, Yokoi F, Offord SJ. et al . Time course of 5-HT2A receptor occupancy in the human brain after a single oral dose of the putative antipsychotic drug MDL 100,907 measured by positron emission tomography.  Neuropsychopharmacology. 1997;  17 175-185
  • 39 Gründer G, Landvogt C, Vernaleken I. et al . The striatal and extrastriatal D2/D3 receptor-binding profile of clozapine in patients with schizophrenia.  Neuropsychopharmacology. 2006;  31 1027-1035
  • 40 Gründer G, Fellows C, Janouschek H. et al . Brain and Plasma Pharmacokinetics of Aripiprazole in Patients With Schizophrenia: An [18F]Fallypride PET Study.  Am J Psychiat. 2008; 
  • 41 Gulledge AT, Jaffe DB. Dopamine decreases the excitability of layer V pyramidal cells in the rat prefrontal cortex.  J Neurosci. 1998;  18 9139-9151
  • 42 Hall H, Farde L, Halldin C. et al . Autoradiographic localization of extrastriatal D2-dopamine receptors in the human brain using [125I]epidepride.  Synapse. 1996;  23 115-123
  • 43 Hazlett EA, Buchsbaum MS, Kemether E. et al . Abnormal glucose metabolism in the mediodorsal nucleus of the thalamus in schizophrenia.  Am J Psychiat. 2004;  161 305-314
  • 44 Hernandez LF, Segovia G, Mora F. Effects of activation of NMDA and AMPA glutamate receptors on the extracellular concentrations of dopamine, acetylcholine, and GABA in striatum of the awake rat: a microdialysis study.  Neurochemical Research. 2003;  28 1819-1827
  • 45 Hietala J, Syvalahti E, Vuorio K. et al . Presynaptic dopamine function in striatum of neuroleptic-naive schizophrenic patients.  Lancet. 1995;  346 1130-1131
  • 46 Hirvonen J, Erp TG van, Huttunen J. et al . Brain dopamine d1 receptors in twins discordant for schizophrenia.  Am J Psychiat. 2006;  163 1747-1753
  • 47 Holcomb HH, Cascella NG, Thaker GK. et al . Functional sites of neuroleptic drug action in the human brain: PET/FDG studies with and without haloperidol.  Am J Psychiat. 1996;  153 41-49
  • 48 Huber G. Pneumencephalographische und psychopathologische Bilder bei endogenen Psychosen. Berlin, Göttingen, Heidelberg: Springer 1957
  • 49 Hurlemann R, Matusch A, Kuhn KU. et al . 5-HT2A receptor density is decreased in the at-risk mental state.  Psychopharmacology. 2008;  195 579-590
  • 50 Kapur S, Zipursky RB, Remington G. Clinical and theoretical implications of 5-HT2 and D2 receptor occupancy of clozapine, risperidone, and olanzapine in schizophrenia.  Am J Psychiat. 1999;  156 286-293
  • 51 Kargieman L, Santana N, Mengod G, Celada P, Artigas F. Antipsychotic drugs reverse the disruption in prefrontal cortex function produced by NMDA receptor blockade with phencyclidine.  Proc Natl Acad Sci USA. 2007;  104 14843-14848
  • 52 Karlsson P, Farde L, Halldin C, Sedvall G. PET study of D(1) dopamine receptor binding in neuroleptic-naive patients with schizophrenia.  Am J Psychiat. 2002;  159 761-767
  • 53 Kim JJ, Kim DJ, Kim TG. et al . Volumetric abnormalities in connectivity-based subregions of the thalamus in patients with chronic schizophrenia.  Schizophrenia Research. 2007;  97 226-235
  • 54 Kumakura Y, Cumming P, Vernaleken I. et al . Elevated [18F]fluoro-dopamine turnover in brain of patients with schizophrenia: an [18F]fluorodopa/positron emission tomography study.  J Neurosci. 2007;  27 8080-8087
  • 55 Laruelle M, Abi-Dargham A. Dopamine as the wind of the psychotic fire: new evidence from brain imaging studies.  J Psychopharmacol. 1999;  13 358-371
  • 56 Lawler CP, Prioleau C, Lewis MM. et al . Interactions of the novel antipsychotic aripiprazole (OPC-14597) with dopamine and serotonin receptor subtypes.  Neuropsychopharmacology. 1999;  20 612-627
  • 57 Lawrie SM, Whalley HC, Abukmeil SS. et al . Brain structure, genetic liability, and psychotic symptoms in subjects at high risk of developing schizophrenia.  Biol Psychiat. 2001;  49 811-823
  • 58 Lee FJ, Xue S, Pei L. et al . Dual regulation of NMDA receptor functions by direct protein-protein interactions with the dopamine D1 receptor.  Cell. 2002;  111 219-230
  • 59 Leviel V, Gobert A, Guibert B. Direct observation of dopamine compartmentation in striatal nerve terminal by ‘in vivo’ measurement of the specific activity of released dopamine.  Brain Res. 1989;  499 205-213
  • 60 Mamo D, Kapur S, Shammi CM. et al . A PET study of dopamine D2 and serotonin 5-HT2 receptor occupancy in patients with schizophrenia treated with therapeutic doses of ziprasidone.  Am J Psychiat. 2004;  161 818-825
  • 61 Mamo D, Graff A, Mizrahi R. et al . Differential effects of aripiprazole on D(2), 5-HT(2), and 5-HT(1A) receptor occupancy in patients with schizophrenia: a triple tracer PET study.  Am J Psychiat. 2007;  164 1411-1417
  • 62 Manoach DS, Gollub RL, Benson ES. et al . Schizophrenic subjects show aberrant fMRI activation of dorsolateral prefrontal cortex and basal ganglia during working memory performance.  Biol Psychiat. 2000;  48 99-109
  • 63 Meltzer HY, Matsubara S, Lee JC. The ratios of serotonin2 and dopamine2 affinities differentiate atypical and typical antipsychotic drugs.  Psychopharmacology Bulletin. 1989;  25 390-392
  • 64 Meyer-Lindenberg A, Miletich RS, Kohn PD. et al . Reduced prefrontal activity predicts exaggerated striatal dopaminergic function in schizophrenia.  Nat Neurosci. 2002;  5 267-271
  • 65 Minuzzi L, Nomikos GG, Wade MR. et al . Interaction between LSD and dopamine D2/3 binding sites in pig brain.  Synapse. 2005;  56 198-204
  • 66 Nordström AL, Farde L, Wiesel FA. et al . Central D2-dopamine receptor occupancy in relation to antipsychotic drug effects: a double-blind PET study of schizophrenic patients.  Biol Psychiat. 1993;  33 227-235
  • 67 O’Connor WT. Functional neuroanatomy of the basal ganglia as studied by dual-probe microdialysis.  Nucl Med Biol. 1998;  25 743-746
  • 68 O’Connor WT. Functional neuroanatomy of the ventral striopallidal GABA pathway. New sites of interventin in the treatment of schizophrenia.  J Neurosci Meth. 2001;  109 31-39
  • 69 Oke AF, Adams RN. Elevated thalamic dopamine: possible link to sensory dysfunctions in schizophrenia.  Schizophrenia Bulletin. 1987;  13 589-604
  • 70 Oke AF, Putz C, Adams RN, Bird ED. Neuroleptic treatment is an unlikely cause of elevated dopamine in thalamus of schizophrenic subjects.  Psychiat Res. 1992;  45 203-208
  • 71 Okubo Y, Suhara T, Suzuki K. et al . Decreased prefrontal dopamine D1 receptors in schizophrenia revealed by PET.  Nature. 1997;  385 634-636
  • 72 Penit-Soria J, Audinat E, Crepel F. Excitation of rat prefrontal cortical neurons by dopamine: an in vitro electrophysiological study.  Brain Res. 1987;  425 263-274
  • 73 Petit-Taboue MC, Landeau B, Barre L. et al . Parametric PET imaging of 5HT2A receptor distribution with 18F-setoperone in the normal human neocortex.  J Nucl Med. 1999;  40 25-32
  • 74 Preuss UW, Zetzsche T, Jager M. et al . Thalamic volume in first-episode and chronic schizophrenic subjects: a volumetric MRI study.  Schizophrenia Research. 2005;  73 91-101
  • 75 Reith J, Benkelfat C, Sherwin A. et al . Elevated dopa decarboxylase activity in living brain of patients with psychosis.  Proc Natl Acad Sci USA. 1994;  91 11651-11654
  • 76 Salgado-Pineda P, Baeza I, Perez-Gomez M. et al . Sustained attention impairment correlates to gray matter decreases in first episode neuroleptic-naive schizophrenic patients.  NeuroImage. 2003;  19 365-375
  • 77 Seamans JK, Gorelova N, Durstewitz D, Yang CR. Bidirectional dopamine modulation of GABAergic inhibition in prefrontal cortical pyramidal neurons.  J Neurosci. 2001;  21 3628-3638
  • 78 Seamans JK, Yang CR. The principal features and mechanisms of dopamine modulation in the prefrontal cortex.  Prog Neurobiol. 2004;  74 1-58
  • 79 Seeman P, Lee T. Antipsychotic drugs: direct correlation between clinical potency and presynaptic action on dopamine neurons.  Science. 1975;  188 1217-1219
  • 80 Seeman P. Atypical antipsychotics: mechanism of action.  Can J Psychiat. 2002;  47 27-38
  • 81 Slifstein M, Kolachana B, Simpson EH. et al . COMT genotype predicts cortical-limbic D1 receptor availability measured with [(11)C]NNC112 and PET.  Mol Psychiat. 2008; 
  • 82 Smith GS, Dewey SL, Brodie JD. et al . Serotonergic modulation of dopamine measured with [11C]raclopride and PET in normal human subjects.  Am J Psychiat. 1997;  154 490-496
  • 83 Soares JC, Innis RB. Neurochemical brain imaging investigations of schizophrenia.  Biol Psychiat. 1999;  46 600-615
  • 84 Steriade M, Jones EG, MacCormick DA. Thalamus: organization and function. Amsterdam: Elsevier 1997
  • 85 Stone JM, Davis JM, Leucht S, Pilowsky LS. Cortical Dopamine D2/D3 Receptors Are a Common Site of Action for Antipsychotic Drugs – An Original Patient Data Meta-analysis of the SPECT and PET In Vivo Receptor Imaging Literature.  Schizophrenia Bulletin. 2008; 
  • 86 Strungas S, Christensen JD, Holcomb JM, Garver DL. State-related thalamic changes during antipsychotic treatment in schizophrenia: preliminary observations.  Psychiat Res. 2003;  124 121-124
  • 87 Suhara T, Okubo Y, Yasuno F. et al . Decreased dopamine D2 receptor binding in the anterior cingulate cortex in schizophrenia.  Arch Gen Psychiat. 2002;  59 25-30
  • 88 Taber MT, Baker GB, Fibiger HC. Glutamate receptor agonists decrease extracellular dopamine in the rat nucleus accumbens in vivo.  Synapse. 1996;  24 165-172
  • 89 Takahashi H, Higuchi M, Suhara T. The role of extrastriatal dopamine D2 receptors in schizophrenia.  Biol Psychiat. 2006;  59 919-928
  • 90 Tallerico T, Novak G, Liu IS, Ulpian C, Seeman P. Schizophrenia: elevated mRNA for dopamine D2(Longer) receptors in frontal cortex.  Brain Res Mol Brain Res. 2001;  87 160-165
  • 91 Talvik M, Nordstrom AL, Olsson H, Halldin C, Farde L. Decreased thalamic D2/D3 receptor binding in drug-naive patients with schizophrenia: a PET study with [11C]FLB 457.  Int J Neuropsychopharmacol. 2003;  6 361-370
  • 92 Tsukada H, Harada N, Nishiyama S. et al . Ketamine decreased striatal [(11)C]raclopride binding with no alterations in static dopamine concentrations in the striatal extracellular fluid in the monkey brain: multiparametric PET studies combined with microdialysis analysis.  Synapse. 2000;  37 95-103
  • 93 Tuppurainen H, Kuikka J, Viinamaki H. et al . Extrastriatal dopamine D 2/3 receptor density and distribution in drug-naive schizophrenic patients.  Mol Psychiat. 2003;  8 453-455
  • 94 Varty GB, Higgins GA. Dopamine agonist-induced hypothermia and disruption of prepulse inhibition: evidence for a role of D3 receptors?.  Behav Pharmacol. 1998;  9 445-455
  • 95 Vernaleken I, Siessmeier T, Buchholz HG. et al . High striatal occupancy of D2-like dopamine receptors by amisulpride in the brain of patients with schizophrenia.  Int J Neuropsychopharmacol. 2004;  7 421-430
  • 96 Vernaleken I, Buchholz HG, Kumakura Y. et al . Prefrontal’ cognitive performance of healthy subjects positively correlates with cerebral FDOPA influx: an exploratory [18F]-fluoro-L-DOPA-PET investigation.  Hum Brain Mapp. 2007;  28 931-939
  • 97 Vernaleken I, Kumakura Y, Buchholz HG. et al . Baseline [(18)F]-FDOPA kinetics are predictive of haloperidol-induced changes in dopamine turnover and cognitive performance: A positron emission tomography study in healthy subjects.  NeuroImage. 2008;  40 1222-1231
  • 98 Vernaleken I, Gründer G. Elevated D2/3-Receptor Availability in Schizophrenia: A [18F]Fallypride Study.  [Abstract] NeuroImage. , ; in press
  • 99 Vollenweider FX, Leenders KL, Scharfetter C. et al . Metabolic hyperfrontality and psychopathology in the ketamine model of psychosis using positron emission tomography (PET) and [18F]fluorodeoxyglucose (FDG).  Eur Neuropsychopharmacol. 1997;  7 9-24
  • 100 Vollenweider FX, Vontobel P, Oye I, Hell D, Leenders KL. Effects of (S)-ketamine on striatal dopamine: a [11C]raclopride PET study of a model psychosis in humans.  J Psychiat Res. 2000;  34 35-43
  • 101 Wan FJ, Swerdlow NR. Sensorimotor gating in rats is regulated by different dopamine-glutamate interactions in the nucleus accumbens core and shell subregions.  Brain Res. 1996;  722 168-176
  • 102 Weinberger DR, Laruelle M. Neurochemical and neuropharmacological imaging in schizophrenia. In: Davis KL, Charney DS, Coyle JT, Nemeroff C (eds). Neuropharmacology—the fifth generation of progress. Philadelphia: Lippincott, Williams, & Wilkins 2001
  • 103 Wilson CJ. Striatal D2 receptors and LTD: yes, but not where you thought they were.  Neuron. 2006;  50 347-348
  • 104 Winterer G. Prefrontal Dopamine Signaling in Schizophrenia - The Corticocentric Model.  Pharmacopsychiatry. 2007;  40 S45-S53
  • 105 Xiberas X, Martinot JL, Mallet L. et al . Extrastriatal and striatal D(2) dopamine receptor blockade with haloperidol or new antipsychotic drugs in patients with schizophrenia.  Brit J Psychiat. 2001;  179 503-508
  • 106 Yang CR, Seamans JK. Dopamine D1 receptor actions in layers V-VI rat prefrontal cortex neurons in vitro: modulation of dendritic-somatic signal integration.  J Neurosci. 1996;  16 1922-1935
  • 107 Young KA, Randall PK, Wilcox RE. Startle and sensorimotor correlates of ventral thalamic dopamine and GABA in rodents.  Neuroreport. 1995;  6 2495-2499
  • 108 Young KA, Manaye KF, Liang C, Hicks PB, German DC. Reduced number of mediodorsal and anterior thalamic neurons in schizophrenia.  Biol Psychiat. 2000;  47 944-953

Correspondence

I. VernalekenMD 

Department of Psychiatry and Psychotherapy

RWTH Aachen University

Pauwelsstraße 30

52074 Aachen

Germany

Phone: +49/241/80 89 65 4

Fax: +49/241/80 33 89 65 4

Email: ivernaleken@ukaachen.de

    >