Fortschr Neurol Psychiatr 2009; 77(6): 326-333
DOI: 10.1055/s-0028-1109378
Übersicht

© Georg Thieme Verlag KG Stuttgart · New York

Von der symptomatischen zur kausalen Therapie?

Neue Entwicklungen in der Pharmakotherapie der Alzheimer-DemenzFrom Symptomatic to Disease Modifying Therapy?Recent Developments in the Pharmacotherapy of Alzheimer’s DiseaseA. G. Franke1 , K. Lieb1 , A. Fellgiebel1
  • 1Klinik für Psychiatrie und Psychotherapie (Prof. K. Lieb), Universitätsmedizin der Johannes Gutenberg-Universität Mainz
Further Information

Publication History

Publication Date:
05 June 2009 (online)

Zusammenfassung

Die gegenwärtige Pharmakotherapie der Alzheimer-Demenz (AD) zielt auf die Verbesserung oder Stabilisierung von kognitiver Leistungsfähigkeit und Alltagsaktivitäten, auf eine Verminderung des Auftretens oder eine Reduktion von nicht kognitiven, neuropsychiatrischen Symptomen sowie auf eine Verzögerung der Progression. Zur medikamentösen Behandlung sind diesymptomatisch wirksamen Acetylcholinesterase-Inhibitoren (ACh-I) Donepezil, Galantamin und Rivastigmin sowie der partielle N-Methyl-D-Aspartat-(NMDA)-Antagonist Memantine zugelassen. Neue symptomatisch wirksame Substanzen wie selektive Acetylcholinrezeptor-modulierende Pharmaka oder Histaminrezeptorantagonisten befinden sich gegenwärtig in der Entwicklung. Obwohl krankheitsmodifizierende, kausale Therapien derzeit noch nicht verfügbar sind, gibt es auf den unterschiedlichen Stufen der pharmakologischen Prüfung eine Reihe von Neuentwicklungen, darunter Substanzen, die direkt auf bekannte Pathomechanismen der AD wirken, insbesondere den amyloidogenen Stoffwechselweg der Amyloidvorläufer-Protein-Prozessierung (APP-Prozessierung). Leider konnte trotz präklinisch überzeugender Hinweise auf Wirksamkeit verschiedener Ansätze bisher der klinische Durchbruch bei der „kausalen” pharmakologischen Therapie der AD nicht erreicht werden. Mehrere im Tierversuch erfolgreiche und vielversprechende krankheitsmodifizierende Substanzen fielen jüngst bei der klinischen Prüfung am Patienten durch. Die vorliegende Übersichtsarbeit fasst bewertend die etablierten und insbesondere die neuen und zukünftigen pharmakologischen Therapieoptionen zusammen.

Abstract

Until today the pharmacological therapy of Alzheimer’s disease (AD) is still limited to symptomatic temporary improvement or stabilization of cognitive performance and activities of daily living, and the reduction of neuropsychiatric symptoms of the disease. Available symptomatic treatment options are the acetylcholinesterase inhibitors (ACh-I) donepezil, galantamine, rivastigmine, and the partial N-Methyl-D-Aspartat-(NMDA)-antagonist memantine. Further substances with symptomatic targets, especially selective acetylcholine and histamine receptors, are currently under development. Numerous of disease-modifying substances mainly targeting components of the amyloidogenic pathway of AD are presently studied in different phases of preclinical and clinical trials. Against earlier expectations which derived from promising preclinical immunization studies the breakthrough of disease-modification in AD is not in sight yet. Aim of this review is to summarize established pharmacological treatment options and the stage of development of upcoming symptomatic and disease-modifying substances of AD.

Literatur

  • 1 Wang D, Noda Y, Zhou Y. et al . The allosteric potentiation of nicotinic acetylcholine receptors by galantamine ameliorates the cognitive dysfunction in beta amyloid25 – 35i. c.v.-injected mice: involvement of dopaminergic systems.  Neuropsychopharmacology. 2007;  32 1261-1271
  • 2 Institut für Qualität und Wirtschaftlichkeit im Gesundheitswesen (IQWiG .Abschlussbericht A 05 – 19A am 7.2.2007: Cholinesterasehemmer bei Alzheimer Demenz. Köln;
  • 3 Klein J. Phenserine.  Expert Opin Investig Drugs. 2007;  16 1087-1097
  • 4 Utsuki T, Yu Q S, Davidson D. et al . Identification of novel small molecule inhibitors of amyloid precursor protein synthesis as a route to lower Alzheimer’s disease amyloid-beta peptide.  J Pharmacol Exp Ther. 2006;  318 855-862
  • 5 Kadir A, Andreasen N, Almkvist O. et al . Effect of phenserine treatment on brain functional activity and amyloid in Alzheimer’s disease.  Ann Neurol. 2008;  63 621-631
  • 6 Thatte U. Phenserine Axonyx.  Curr Opin Investig Drugs. 2005;  6 729-739
  • 7 Levin E D. Nicotinic receptor subtypes and cognitive function.  J Neurobiol. 2002;  53 633-640
  • 8 CoMentis, Pressemeldung vom 7.1.2009: CoMentis Announces Proof-of-Activity-Data from its Phase I Study of Disease-Modifying Alzheimer’s Disease Therapy;. South San Francisco, CA;
  • 9 Memory Pharmaceuticals, Pressemitteilung vom 17.9.2008: Memory Pharmaceuticals and Roche Expand R 3487 /MEM 3454 Development Program;. Montvale, New Jersey;
  • 10 Memory Pharmaceuticals, Pressemeldung vom 19.12.2008: Memory Pharmaceuticals Reports Phase 1 Data for R 4996 /MEM 63 908;. Montvale, New Jersey;
  • 11 Marighetto A, Valerio S, Desmedt A. et al . Comparative effects of the alpha7 nicotinic partial agonist, S 24 795, and the cholinesterase inhibitor, donepezil, against aging-related deficits in declarative and working memory in mice.  Psychopharmacology. 2008;  197 499-508
  • 12 Dunbar G, Boeijinga P H, Demazieres A. et al . Effects of TC-1734 (AZD3480), a selective neuronal nicotinic receptor agonist, on cognitive performance and the EEG of young healthy male volunteers.  Psychopharmacology. 2007;  191 919-929
  • 13 Bakchine S, Loft H. Memantine treatment in patients with mild to moderate Alzheimer’s disease: results of a randomised, double-blind, placebo-controlled 6-month study.  J Alzheimers Dis. 2008;  13 97-107
  • 14 Dyck C H, Tariot P N, Meyers van B. et al . A 24-week randomized, controlled trial of memantine in patients with moderate-to-severe Alzheimer disease.  Alzheimer Dis Assoc Disord. 2007;  21 136-143
  • 15 Lynch G. Glutamate-based therapeutic approaches: ampakines.  Curr Opin Pharmacol. 2006;  6 82-88
  • 16 Lauterborn J C, Rex C S, Kramar E. et al . Brain-derived neurotrophic factor rescues synaptic plasticity in a mouse model of fragile X syndrome.  J Neurosci. 2007;  27 10685-10694
  • 17 Rex C S, Lauterborn J C, Lin C Y. et al . Restoration of long-term potentiation in middle-aged hippocampus after induction of brain-derived neurotrophic factor.  J Neurophysiol. 2006;  96 677-685
  • 18 Haas H, Panula P. The role of histamine and the tuberomamillary nucleus in the nervous system.  Nat Rev Neurosci. 2003;  4 121-130
  • 19 Medhurst A D, Atkins A R, Beresford I J. et al . GSK189254, a novel H 3 receptor antagonist that binds to histamine H 3 receptors in Alzheimer’s disease brain and improves cognitive performance in preclinical models.  J Pharmacol Exp Ther. 2007;  321 1032-1045
  • 20 Brown R E, Stevens D R, Haas H L. The physiology of brain histamine.  Prog Neurobiol. 2001;  63 637-672
  • 21 Bachurin S, Bukatina E, Lermontova N. et al . Antihistamine agent Dimebon as a novel neuroprotector and a cognition enhancer.  Ann N Y Acad Sci. 2001;  939 425-435
  • 22 Bachurin S O, Shevtsova E P, Kireeva E G. et al . Mitochondria as a target for neurotoxins and neuroprotective agents.  Ann N Y Acad Sci. 2003;  993 334-344; discussion 345 – 339
  • 23 Doody R S, Gavrilova S I, Sano M. et al . Effect of dimebon on cognition, activities of daily living, behaviour, and global function in patients with mild-to-moderate Alzheimer’s disease: a randomised, double-blind, placebo-controlled study.  Lancet. 2008;  372 207-215
  • 24 Rowe W B, Callahan P M, Hsu C C. Characterization of Serotonin 5 HT6 Receptor Antagonists as Putative Drugs for Age-Related Cognitive Impairment and Alzheimer’s Disease. International Conference on Alzheimer’s Disease (ICAD) 2008
  • 25 Memory Pharmaceuticals, Pipeline of Products am 27.1.2009: ”MEM 1003”,. Québec, Canada;
  • 26 Memory Pharmaceuticals, Pipeline of Products am 27.1.2009: ”MEM 1414”,. Québec, Canada;
  • 27 Szekely C A, Thorne J E, Zandi P P. et al . Nonsteroidal anti-inflammatory drugs for the prevention of Alzheimer’s disease: a systematic review.  Neuroepidemiology. 2004;  23 159-169
  • 28 Akiyama H, Barger S, Barnum S. et al . Inflammation and Alzheimer’s disease.  Neurobiol Aging. 2000;  21 383-421
  • 29 Gasparini L, Ongini E, Wilcock D. et al . Activity of flurbiprofen and chemically related anti-inflammatory drugs in models of Alzheimer’s disease.  Brain Res Brain Res Rev. 2005;  48 400-408
  • 30 Czirr E, Weggen S. Gamma-secretase modulation with Abeta42-lowering nonsteroidal anti-inflammatory drugs and derived compounds.  Neurodegener Dis. 2006;  3 298-304
  • 31 Tabet N, Feldmand H. Ibuprofen for Alzheimer’s disease.  Cochrane Database Syst Rev. 2003;  2 CD004031
  • 32 Szekely C A, Green R C, Breitner J C. et al . No advantage of A beta 42-lowering NSAIDs for prevention of Alzheimer dementia in six pooled cohort studies.  Neurology. 2008;  70 2291-2298
  • 33 Kukar T L, Ladd T B, Bann M A. et al . Substrate-targeting gamma-secretase modulators.  Nature. 2008;  453 925-929
  • 34 Myriad Genetics, Pressemeldung vom 30.8.2008: Results of U.S. Phase 3 Trial of Flurizan™ in Alzheimer’s Disease;. Salt Lake City, UT;
  • 35 Reid P C, Urano Y, Kodama T. et al . Alzheimer’s disease: cholesterol, membrane rafts, isoprenoids and statins.  J Cell Mol Med. 2007;  11 383-392
  • 36 Kurinami H, Sato N, Shinohara M. et al . Prevention of amyloid beta-induced memory impairment by fluvastatin, associated with the decrease in amyloid beta accumulation and oxidative stress in amyloid beta injection mouse model.  Int J Mol Med. 2008;  21 531-537
  • 37 Fahrenholz F, Postina R. Alpha-secretase activation – an approach to Alzheimer’s disease therapy.  Neurodegener Dis. 2006;  3 255-261
  • 38 Schmidt R, Neff F, Lampl C. et al . Therapy of Alzheimer’s disease: current status and future development.  Neuropsychiatr. 2008;  22 153-171
  • 39 Dolga A M, Nijholt I M, Ostroveanu A. et al . Lovastatin induces neuroprotection through tumor necrosis factor receptor 2 signaling pathways.  J Alzheimers Dis. 2008;  13 111-122
  • 40 Scott H D, Laake K. Statins for the prevention of Alzheimer’s disease.  Cochrane Database Syst Rev. 2001;  4 CD003160
  • 41 Scott H D, Laake K. Statins for the reduction of risk of Alzheimer’s disease.  Cochrane Database Syst Rev. 2001;  3 CD003160
  • 42 Jones R W, Kivipelto M, Feldman H. et al . The Atorvastatin/Donepezil in Alzheimer’s Disease Study (LEADe): design and baseline characteristics.  Alzheimers Dement. 2008;  4 145-153
  • 43 Deuss M, Reiss K, Hartmann D. Part-time alpha-secretases: the functional biology of ADAM 9, 10 and 17.  Curr Alzheimer Res. 2008;  5 187-201
  • 44 Holback S, Adlerz L, Gatsinzi T. et al . PI3-K- and PKC-dependent up-regulation of APP processing enzymes by retinoic acid.  Biochem Biophys Res Commun. 2008;  365 298-303
  • 45 Schobel S, Neumann S, Hertweck M. et al . A novel sorting nexin modulates endocytic trafficking and alpha-secretase cleavage of the amyloid precursor protein.  J Biol Chem. 2008;  283 14 257-14 268
  • 46 Yang H Q, Pan J, Ba M W. et al . New protein kinase C activator regulates amyloid precursor protein processing in vitro by increasing alpha-secretase activity.  Eur J Neurosci. 2007;  26 381-391
  • 47 Siemers E R, Quinn J F, Kaye J. et al . Effects of a gamma-secretase inhibitor in a randomized study of patients with Alzheimer disease.  Neurology. 2006;  66 602-604
  • 48 Santa-Maria I, Hernandez F, Del Rio J. et al . Tramiprosate, a drug of potential interest for the treatment of Alzheimer’s disease, promotes an abnormal aggregation of tau.  Mol Neurodegener. 2007;  2 17
  • 49 Aisen P S, Saumier D, Briand R. et al . A Phase II study targeting amyloid-beta with 3APS in mild-to-moderate Alzheimer disease.  Neurology. 2006;  67 1757-1763
  • 50 Aisen P S, Gauthier S, Vellas B. et al . Alzhemed: a potential treatment for Alzheimer’s disease.  Curr Alzheimer Res. 2007;  4 473-478
  • 51 Neurochem, Pipeline of Products am 27.1.2009: ”In November 2007, Neurochem announced the early termination of the European Phase III clinical trial...” Québec, Canada;
  • 52 Lannfelt L, Blennow K, Zetterberg H. et al . Safety, efficacy, and biomarker findings of PBT2 in targeting Abeta as a modifying therapy for Alzheimer’s disease: a phase IIa, double-blind, randomised, placebo-controlled trial.  Lancet Neurol. 2008;  7 779-786
  • 53 Bush A I, Martins R N, Rumble B. et al . The amyloid precursor protein of Alzheimer’s disease is released by human platelets.  J Biol Chem. 1990;  265 15977-15983
  • 54 Pajonk F G, Kessler H, Supprian T. et al . Cognitive decline correlates with low plasma concentrations of copper in patients with mild to moderate Alzheimer’s disease.  J Alzheimers Dis. 2005;  8 23-27
  • 55 Kessler H, Bayer T A, Bach D. et al . Intake of copper has no effect on cognition in patients with mild Alzheimer’s disease: a pilot phase 2 clinical trial.  J Neural Transm. 2008;  115 1181-1187
  • 56 Brody D L, Holtzman D M. Active and passive immunotherapy for neurodegenerative disorders.  Annu Rev Neurosci. 2008;  31 175-193
  • 57 Lemere C A, Maier M, Peng Y. et al . Novel Abeta immunogens: is shorter better?.  Curr Alzheimer Res. 2007;  4 427-436
  • 58 Schenk D, Barbour R, Dunn W. et al . Immunization with amyloid-beta attenuates Alzheimer-disease-like pathology in the PDAPP mouse.  Nature. 1999;  400 173-177
  • 59 Hock C, Konietzko U, Papassotiropoulos A. et al . Generation of antibodies specific for beta-amyloid by vaccination of patients with Alzheimer disease.  Nat Med. 2002;  8 1270-1275
  • 60 Senior K. Dosing in phase II trial of Alzheimer’s vaccine suspended.  Lancet Neurol. 2002;  1 3
  • 61 Masliah E, Hansen L, Adame A. et al . Abeta vaccination effects on plaque pathology in the absence of encephalitis in Alzheimer disease.  Neurology. 2005;  64 129-131
  • 62 Fox N C, Black R S, Gilman S. et al . Effects of Abeta immunization (AN1792) on MRI measures of cerebral volume in Alzheimer disease.  Neurology. 2005;  64 1563-1572
  • 63 Gilman S, Koller M, Black R S. et al . Clinical effects of Abeta immunization (AN1792) in patients with AD in an interrupted trial.  Neurology. 2005;  64 1553-1562
  • 64 Pride M, Seubert P, Grundman M. et al . Progress in the active immunotherapeutic approach to Alzheimer’s disease: clinical investigations into AN 1792-associated meningoencephalitis.  Neurodegener Dis. 2008;  5 194-196
  • 65 Bard F, Cannon C, Barbour R. et al . Peripherally administered antibodies against amyloid beta-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease.  Nat Med. 2000;  6 916-919
  • 66 Dodart J C, Bales K R, Gannon K S. et al . Immunization reverses memory deficits without reducing brain Abeta burden in Alzheimer’s disease model.  Nat Neurosci. 2002;  5 452-457
  • 67 Elan, Pressemitteilung vom 17.6.2008: Elan and Wyeth Announce Encouraging Top-line Results from Phase 2 Clinical Trial of Bapineuzumab for Alzheimer’s Disease;. Dublin, Ireland & Madison, N.J;
  • 68 Hooper C, Killick R, Lovestone S. The GSK3 hypothesis of Alzheimer’s disease.  J Neurochem. 2008;  104 1433-1439
  • 69 Hattori M, Sugino E, Minoura K. et al . Different inhibitory response of cyanidin and methylene blue for filament formation of tau microtubule-binding domain.  Biochem Biophys Res Commun. 2008;  374 158-163
  • 70 Landreth G, Jiang Q, Mandrekar S. et al . PPARgamma agonists as therapeutics for the treatment of Alzheimer’s disease.  Neurotherapeutics. 2008;  5 481-489
  • 71 Engler H, Forsberg A, Almkvist O. et al . Two-year follow-up of amyloid deposition in patients with Alzheimer’s disease.  Brain. 2006;  129 2856-2866
  • 72 Holmes C, Boche D, Wilkinson D. et al . Long-term effects of Abeta42 immunisation in Alzheimer’s disease: follow-up of a randomised, placebo-controlled phase I trial.  Lancet. 2008;  372 216-223
  • 73 Affiris, Pressemitteilung vom 16.7.2008: AFFiRiS: Milestone Reached in Clinical Trial of Alzheimer’s Vaccine;. Vienna, Astria;

PD Dr. med. Andreas Fellgiebel

Klinik für Psychiatrie und Psychotherapie, Universitätsmedizin der Johannes Gutenberg-Universität Mainz

Untere Zahlbacher Str. 8

55131 Mainz

Email: fellgiebel@psychiatrie.klinik.uni-mainz.de

    >