Geburtshilfe Frauenheilkd 2009; 69(6): 549-558
DOI: 10.1055/s-0029-1185793
Translationale Forschung

© Georg Thieme Verlag KG Stuttgart · New York

Angiogenese und Tumorhypoxie beim Mammakarzinom: Fakten, Fragen und therapeutische Möglichkeiten

Angiogenesis and Tumor Hypoxia in Breast Cancer: Facts, Questions and TherapiesP. Wülfing1 , L. Kiesel1
  • 1Universitätsklinikum Münster, Münster
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
02. Juli 2009 (online)

Zusammenfassung

Schon vor über 35 Jahren postulierte Judah Folkman als Pionier der Angiogeneseforschung, dass das Wachstum und die Metastasierung von Tumoren entscheidend von ihrer Blutgefäßversorgung abhängt. Seitdem ist der Wachstumsfaktor VEGF (Vascular Endothelial Growth Factor), der über seine Rezeptoren VEGFR-1 (Flt-1) und VEGFR-2 (KDR) wirkt, als Schlüsselmolekül der Angiogenese identifiziert worden. VEGF bewirkt das Aussprossen neuer Blutgefäße aus vorbestehenden Gefäßen in der Tumorumgebung. Diese Tumorblutgefäße sind abnormal und durch einen chaotischen Verlauf sowie eine unreife Struktur mit einer höheren Permeabilität charakterisiert. Dies bewirkt einen schlechteren Blutfluss, sodass beispielsweise Chemotherapeutika einen Tumor nicht in optimaler Dosierung erreichen können. Darüber hinaus induziert VEGF auch direkt die Tumorzell-Proliferation. VEGF wird von zahlreichen Tumoren und auch beim Mammakarzinom gebildet. Beim Mammakarzinom hat VEGF einen negativen prognostischen und prädiktiven Wert. In den letzten Jahren sind zahlreiche antiangiogen wirkende Substanzen (z. B. Antikörper, Rezeptor-Tyrosinkinase-Inhibitoren, lösliche Rezeptoren) gegen VEGF, seine Rezeptoren oder den VEGF-Signalweg entwickelt worden. Die am weitesten entwickelte Substanz ist Bevacizumab (Avastin®), ein monoklonaler humanisierter Antikörper gegen VEGF, der die Bindung des Liganden an seine Rezeptoren und somit die nachgeschaltete angiogene Signalwirkung verhindert. In Phase-III-Studien konnte die klinische Wirksamkeit von Bevacizumab in Kombination mit einer Chemotherapie (Paclitaxel bzw. Docetaxel) beim unvorbehandelten metastasierten Mammakarzinom (first line) gezeigt werden. In der klinischen Erprobung sind unter anderem auch sogenannte Multikinase-Inhibitoren (z. B. Sunitinib, Sorafenib), die verschiedene proangiogene Rezeptoren gleichzeitig hemmen. Trotz aller Fortschritte hat sich die klinische Umsetzung antiangiogener Therapiestrategien als schwieriger als erwartet herausgestellt. In der Zukunft wird es wichtig sein, diejenigen Patientinnen zu identifizieren, die maximal von einer bestimmten antiangiogenen Therapie profitieren. Neben der Identifikation geeigneter Tumoren und Erkrankungsstadien müssen auch prädiktive Biomarker entwickelt werden, die eine Vorhersage zulassen, welche Substanz bei einer Patientin optimal wirksam ist, sodass eine individualisierte maßgeschneiderte Therapie möglich ist. In den nächsten Jahren werden die Daten zahlreicher Studien zur Antiangiogenese verfügbar, die zum besseren Verständnis dieser Zusammenhänge beitragen könnten. Dabei kann uns insbesondere die translationale Forschung helfen, den klinischen Einsatz der antiangiogenen Therapien zu optimieren.

Abstract

More than 35 years ago Judah Folkman pioneered angiogenic research with his suggestion that blood vessel supply is critical for the growth and metastastic spread of tumor cells. Since then, numerous research efforts have resulted in the identification of vascular endothelial growth factor (VEGF) and its two receptors VEGFR-1 (Flt-1) and VEGFR-2 (KDR) as key molecules for neoangiogenesis in tumors. VEGF leads to the sprouting of new vessels from preexisting vessels in the vicinity of the tumor. Morphologically, these tumor vessels are characterized by undirected growth and an immature structure with increased permeability. This leads to diminished blood flow which can compromise the optimal perfusion and delivery of chemotherapeutic drugs to the tumor tissue. Moreover, VEGF directly induces tumor cell proliferation. VEGF is produced by numerous tumor entities, and also by breast cancers. In breast cancer, VEGF has been shown to have a negative prognostic and predictive value. Recently, antiangiogenic compounds, such as monoclonal antibodies, tyrosine kinase inhibitors and soluble receptors, have been developed to target VEGF, its receptors and the VEGF signalling pathway. The most advanced compound is Bevacizumab (Avastin®), a monoclonal, humanized antibody against VEGF, which blocks the binding of the ligand to its receptors and subsequent proangiogenic signalling cascades. In phase-III trials it was shown that the combination of Bevacizumab and chemotherapy (paclitaxel, docetaxel) is active in the 1st-line treatment of untreated metastastic breast cancer. Other compounds, such as sorafenib and sunitinib which target multiple proangiogenic receptors, are also undergoing clinical development. Despite a lot of progress in the research into molecular targeted therapies, the translation of research results into daily clinical practice has been more difficult than expected. In the future, it will be critical to identify those patients who could benefit most from antiangiogenic therapy. In addition to the identification of appropriate tumor entities and stages we need to identify predictive biomarkers that allow a prognosis about which compound will be active in a patient so as to facilitate an individual tailored molecular therapy. In the next couple of years data from several clinical trials will be available with results on the objective response rates to antiangiogenic therapies, which will contribute to a better understanding of the underlying mechanisms of these agents. Translational research will help to further define clinical settings for antiangiogenic therapies.

Literatur

  • 1 Arbiser J L, Moses M A. et al . Oncogenic H‐ras stimulates tumor angiogenesis by two distinct pathways.  Proc Natl Acad Sci USA. 1997;  94 861-866
  • 2 Asahara T, Murohara T. et al . Isolation of putative progenitor endothelial cells for angiogenesis.  Science. 1997;  275 964-967
  • 3 Bertolini F, Shaked Y. et al . The multifaced circulating endothelial cell in cancer: from promiscuity to surrogate marker and target identification.  Nat Rev Cancer. 2006;  6 835-845
  • 4 Browder T, Butterfield C E. et al . Antiangiogenic scheduling of chemotherapy improves efficacy against experimental drug-resistant cancer.  Cance Res. 2000;  60 1878-1886
  • 5 Burstein H J, Elias A D. et al . Phase II study of sunitinib malate, an oral multitargeted tyrosine kinase inhibitor, in patients with metastatic breast cancer previously treated with an anthracycline and a taxane.  J Clin Oncol. 2008;  26 1993-1999
  • 6 Carmeliet P. Angiogenesis in health and disease.  Nature Medicine. 2003;  9 653-660
  • 7 Casanovas O, Hicklin D. et al . Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late-stage pancreatic islet tumors.  Cancer Cell. 2005;  8 299-309
  • 8 Dellapasqua S, Bertolini F. et al . Metronomic cyclophosphamide and capecitabine combined with bevacizumab in advanced breast cancer.  J Clin Oncol. 2008;  26 4899-4905
  • 9 Dong X, Han Z C. et al . Angiogenesis and antiangiogenic therapy in hematologic malignancies.  Crit Rev Oncol Hematol. 2007;  62 105-118
  • 10 Dvorak H F, Brown L F. et al . Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesis.  Am J Pathol. 1995;  146 1029-1039
  • 11 Ebos J M, Lee C R. et al . Accelerated metastasis after short-term treatment with a potent inhibitor of tumor angiogenesis.  Cancer Cell. 2009;  15 232-239
  • 12 Ebos J M, Lee C R. et al . Multiple circulating proangiogenic factors induced by sunitinib malate are tumor-independent and correlate with anti-tumor efficacy.  Proc Natl Acad Sci USA. 2007;  104 17069-17074
  • 13 Escudier B, Eisen T. et al . Sorafenib in advanced clear-cell renal-cell carcinoma.  N Engl J Med. 2007;  356 125-134
  • 14 Faivre S, Demetri G. et al . Molecular basis for sunitinib efficacy and future clinical development.  Nat Rev Drug Discov. 2007;  6 734-745
  • 15 Ferrara N, Gerber H P. et al . The biology of VEGF and its receptors.  Nat Med. 2003;  9 669-676
  • 16 Fischgräbe J, Wülfing P. Targeted therapies in breast cancer: Established drugs and recent developments.  Curr Clin Pharmacol. 2008;  3 85-98
  • 17 Folkman J. Fundamental concepts of the angiogenic process.  Curr Mol Med. 2003;  3 643-651
  • 18 Fox S B, Generali D G. et al . Breast tumour angiogenesis.  Breast Cancer Res. 2007;  9 216
  • 19 Fürstenberger G, von Moos R. et al . Circulating endothelial cells and angiogenic serum factors during neoadjuvant chemotherapy of primary breast cancer.  Br J Cancer. 2006;  94 524-531
  • 20 Fumoleau P, Greil R, Rayson D. et al . Bevacizumab (BV) maintenance therapy significantly delays disease progression (PD) or death compared with placebo (PL) in the AVADO trial (BV + docetaxel [D] vs. D + PL in 1st-line HER2-negative locally recurrent [LR] or metastatic breast cancer [mBC]).  SABCS. 2008;  Abstr. 903
  • 21 Gao D, Nolan D J. et al . Endothelial progenitor cells control the angiogenic switch in mouse lung metastasis.  Science. 2008;  39 195-198
  • 22 Gasparini G, Fox S B. et al . Determination of angiogenesis adds information to estrogen receptor status in predicting the efficacy of adjuvant tamoxifen in node-positive breast cancer patients.  Clin Cancer Res. 1996;  2 1191-1198
  • 23 Gasparini G, Biganzoli E. et al . Angiogenesis sustains tumor dormancy in patients with breast cancer treated with adjuvant chemotherapy.  Breast Cancer Res Treat. 2001;  65 71-75
  • 24 Gerber H P. et al . Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer.  Nat Rev Drug Discov. 2004;  3 391-400
  • 25 Grunewald M, Avraham I. et al . VEGF-induced adult neovascularization: recruitment, retention, and role of accessory cells.  Cell. 2006;  124 175-189
  • 26 Harris A L. Hypoxia: a key regulatory factor in tumour growth.  Nat Rev Cancer. 2002;  2 38-47
  • 27 Hicklin D J, Ellis L M. Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis.  J Clin Oncol. 2005;  23 1011-1027
  • 28 Johnson D H, Fehrenbacher L. et al . Randomized phase II trial comparing bevacizumab plus carboplatin and paclitaxel with carboplatin and paclitaxel alone in previously untreated locally advanced or metastatic non-small cell lung cancer.  J Clin Oncol. 2004;  22 2184-2191
  • 29 Kabbinavar F F, Schulz J. et al . Addition of bevacizumab to bolus fluorouracil and leucovroin in first-line metastatic colorectal cancer: results of a randomized phase II trial.  J Clin Oncology. 2005;  23 3697
  • 30 Karashima T, Inoue K. et al . Blockade of the vascular endothelial growth factor-receptor 2 pathway inhibits the growth of human renal cell carcinoma, RBM1-IT4, in the kidney but not in the bone of nude mice.  Int J Oncol. 2007;  30 937-945
  • 31 Kerbel R, Folkman J. Clinical translation of angiogenesis inhibitors.  Nat Rev Cancer. 2002;  2 727-739
  • 32 Kerbel R S, Kamen B A. The anti-angiogenic basis of metronomic chemotherapy.  Nat Rev Cancer. 2004;  4 423-436
  • 33 Kim K J, Li B. et al . Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo.  Nature. 1993;  362 841-844
  • 34 Krishnamurthi S S, LoRusso P M. et al . Phase 1 study of weekly anti-vascular endothelial growth factor receptor-1 (VEGFR‐1) monoclonal antibody IMC-18F1 in patients with advanced solid malignancies.  J Clin Oncol. 2008;  26 (Suppl.) abstr. 14630
  • 35 Jain R K. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy.  Science. 2005;  307 58-62
  • 36 Leenders W P, Küsters B. et al . Antiangiogenic therapy of cerebral melanoma metastases result in sustained tumor progression via vessel co-option.  Clin Cancer Res. 2004;  10 6222-6230
  • 37 Liang W C, Wu X. et al . Cross-species vascular endothelial growth factor (VEGF)-blocking antibodies completely inhibit the growth of human tumor xenografts and measure the contribution of stromal VEGF.  J Biol Chem. 2006;  281 951-961
  • 38 Manusco M R, Davis R. et al . Rapid vascular regrowth in tumors after reversal of VEGF inhibition.  J Clin Invest. 2006;  116 2610-2621
  • 39 Maxwell P H. The HIF pathway in cancer.  Semin Cell Dev Biol. 2005;  16 523-530
  • 40 Miles D, Chan A. et al . Randomized, double-blind, placebo-controlled, phase III study of bevacizumab with docetaxel or docetaxel with placebo as first-line therapy for patients with locally recurrent or metastatic breast cancer (mBC): AVADO.  J Clin Oncol. 2008;  26 (Suppl.) abstr. LBA1011
  • 41 Miller K D, Wang M, Gralow D. et al . Paclitaxel plus bevacizumab versus paclitaxel alone for metastatic breast cancer.  N Engl J Med. 2007;  357 2666-2676
  • 42 Miller K D, Trigo J M. et al . A multicenter phase II trial of ZD6474, a vascular endothelial growth factor receptor-2 and epidermal growth factor receptor tyrosin kinase inhibitor, in patients with previously treated metastatic breast cancer.  Clin Cancer Res. 2005;  11 3369-3376
  • 43 Miller K D, Chap L I. et al . Randomized phase III trial of capecitabine compared with bevacizumab plus capecitabine in patients with previously treated metastatic breast cancer.  J Clin Oncol. 2005;  23 792-799
  • 44 Motzer R J, Michaelson M D. et al . Activity of SU11248, a multitargeted inhibitor of vascular endothelial growth factor receptor and platelet-derived growth factor recptor, in patients with metastatic renal cell carcinoma.  J Clin Oncol. 2006;  24 16-24
  • 45 Natori T, Sata M. et al . G‐CSF stimulates angiogenesis and promotes tumor growth: potential contribution of bone marrow-derived endothelial progenitor cells.  Biochem Biophys Res Commun. 2002;  297 1058-1061
  • 46 Okada F, Rak J W. et al . Impact of oncogenes in tumor angiogenesis: mutant K‐ras up-regulation of vascular endothelial growth factor/vascular permeability factor is necessary, but not sufficient for tumorigenicity of human colorectal carcinoma cells.  Proc Natl Acad Sci USA. 1998;  95 3609-3614
  • 47 Okazaki T, Ebihara S. et al . Granulocyte colony-stimulating factor promotes tumor angiogenesis via increasing circulating endothelial progenitor cells and Gr1+CD11b+ cells in cancer animal models.  Int Immunol. 2006;  18 1-9
  • 48 Pàez-Ribes M, Allen E. et al . Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis.  Cancer Cell. 2009;  15 220-231
  • 49 Patnaik A, Pipas M. et al . A phase I dose escalation and pharmacokinetic (PK) study of intravenous (iv) aflibercept (VEGF Trap) plus weekly gemcitabine (Gem) in patients (pts) with advanced solid tumors: preliminary results.  J Clin Oncol. 2008;  26 (Suppl.) abstr. 3558
  • 50 Peters B A, Doaz L A, Polyak K. et al . Contribution of bone marrow-derived endothelial cells to human tumor vasculature.  Nat Med. 2005;  11 261-262
  • 51 Reck M, von Pawel J. et al . Phase III trial of cisplatin plus gemcitabine with either placebo or bevacizumab as first-line therapy for nonsquamous non-small-cell lung cancer: AVAil.  J Clin Oncol. 2009;  27 1227-1234
  • 52 Rini B I, Small E J. Biology and clinical development of vascular endothelial growth factor-targeted therapy in renal cell carcinoma.  J Clin Oncol. 2005;  23 1028-1043
  • 53 Semenza G L. Targeting HIF‐1 for cancer therapy.  Nat Rev Cancer. 2003;  3 721-732
  • 54 Shaked Y, Ciarrocchi A. et al . Therapy-induced acute recruitment of circulating endothelial progenitor cells to tumors.  Science. 2006;  313 1785-1787
  • 55 Shaked Y, Emmenegger U. et al . Optimal biologic dose of metronomic chemotherapy regimens is associated with maximum antiangiogenic activity.  Blood. 2005;  106 3058-3061
  • 56 Shibuya P M, Claesson-Welsh L. Signal tranduction by VEGF receptors in regulation of angiogenesis and lymphangiogenesis.  Exp Cell Res. 2006;  312 549-560
  • 57 Shojaei F, Wu X. et al . Tumor resistance to anti-VEGF treatment is mediated by CD11b+Gr1+ myeloid cells.  Nat Biotechnol. 2007;  25 911-920
  • 58 Shojaei F, Wu X. et al . G‐CSF-initiated myeloid cell mobilization and angiogenesis mediate tumor refractoriness to anti-VEGF therapy in mouse models.  Proc Natl Acad Sci USA. 2009;  106 6742-6747
  • 59 Tozer G M, Kanthou C. et al . Disrupting tumour blood vesses.  Nat Rev Cancer. 2005;  5 423-435
  • 60 Uzzan B, Nicolas P. et al . Microvessel density as a prognostic factor in women with breast cancer: a systematic review of the literature and met-analysis.  Cancer Res. 2004;  64 2941-2955
  • 61 Wedge S R, Ogilvie D J. et al . ZD6474 inhibits vascular endothelial growth factor signaling, angiogenesis, and tumor growth following oral administration.  Cancer Res. 2002;  62 4645-4655
  • 62 Willett C G. et al . Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects in human rectal cancer.  Nature Med. 2004;  10 145-147
  • 63 Willett C G, Boucher Y. et al . Surrogate markers for antiangiogenic therapy and doe-limiting toxicities for bevacizumab with radiation and chemotherapy: continued experience of a phase I trial in rectal cancer patients.  J Clin Oncol. 2005;  23 8136-8139
  • 64 Wülfing P, Kersting C. et al . Expression patterns of angiogenic and lymphangiogenic factors in ductal breast carcinoma in situ.  Br J Cancer. 2005;  92 1720-1728
  • 65 Zachary I. Signaling mechanisms mediating vascular proteactive actions of vascular endothelial growth factor.  Am J Physiol Cell Physiol. 2001;  280 C1375-C1386
  • 66 Zhang W, Ran S. et al . A onoclonal antibody that blocks VEGF binding to VEGFR2 (KDR/Flk-1) inhibits vascular expression of Flk-1 and tumor growth in an orthotopic human breast cancer model.  Angiogenesis. 2002;  5 35-44

Prof. Dr. Pia Wülfing

Universitätsklinikum Münster

Albert-Schweitzer-Straße 33

48149 Münster

eMail: pia.wuelfing@ukmuenster.de

    >