Z Geburtshilfe Neonatol 2009; 213(3): 96-100
DOI: 10.1055/s-0029-1224141
Übersicht

© Georg Thieme Verlag KG Stuttgart · New York

Studies of Placental Vasculogenesis: a Way to Understand Pregnancy Pathology?[*]

Untersuchungen zur plazentaren Vaskulogenese: ein Beitrag zum Verständnis der schwangerschaftsassoziierten Pathologien?F. Herr 1 , N. Baal 2 , M. Zygmunt 1
  • 1Department of Obstetrics and Gynecology, University of Greifswald, Germany
  • 2Department of Obstetrics and Gynecology, University of Giessen, Germany
Further Information

Publication History

Publication Date:
17 June 2009 (online)

Abstract

Undisturbed development and growth of the fetus depends on an adequate vascular development in the fetomaternal unit. Several steps of vascular adaptation both on fetal and maternal side are necessary and involve uterine vasodilation and remodelling by extravillous trophoblast as well as vasculo- and angiogenesis within the placenta. Ubiquitous (e. g. VEGF, bFGF) as well as pregnancy specific (PlGF, hCG, IGF-II, AFP) angiogenic factors are involved. Consequences of abnormal vascular development have been associated with different pregnancy-related pathologies ranging from miscarriage to intrauterine growth restriction or preeclampsia. Pregnancy-associated exposure to bacterial and viral infections or toxic agents (e. g. alcohol, nicotine or drugs) may also influence vascular development of the placenta and often lead to preterm labour and delivery. Different methods of study placental vascular development exist. Morphological and stereological approaches as well as animal models reveal significant limitations and can not be applied to in vivo human situation without hesitation. There is a need to design in vitro models of human placental vascular development allowing studies into the different aspects of this process including: trophoblast and stromal cells, interaction with endothelial progenitor cells, influence of viral or bacterial infection of trophoblast as well as influence of toxic agents. Our manuscript reviews major aspects of vascular development in the placenta and describes author's efforts to establish a three-dimensional model of this process in vitro.

Zusammenfassung

Eine normale Entwicklung und ein regelrechtes Wachstum des Feten hängen von einer adäquaten vaskulären Entwicklung in der fetomaternalen Einheit ab. Eine Vielzahl dieser Schritte sowohl auf der fetalen als auch auf der maternalen Seite ist erforderlich und umfasst die uterine Vasodilatation, die Trophoblasten-Invasion in uterine Gefäße, sowie die adäquate Vaskulo- und Angiogenese in der Plazenta selbst. Sowohl ubiquitäre (VEGF, bFGF) als auch schwangerschafts-spezifische Angiogenesefaktoren (hCG, IGF-II, AFP) sind daran beteiligt. Konsequenzen von vaskulären Abnormalitäten können zu verschiedenen schwangerschafts-spezifischen Pathologien führen, die von Fehlgeburten bis hin zu intrauteriner Wachstumsrestriktion oder Präeklampsie reichen. Expositionen gegenüber bakteriellen oder viralen Infektionen, sowie toxischen Substanzen (Alkohol, Nikotin, Drogen) im Schwangerschaftsverlauf können die Gefäßentwicklung der Plazenta beeinflussen und zu Komplikationen führen. In der Vergangenheit wurden zahlreiche Untersuchungsmethoden der plazentaren Gefäßentwicklung beschrieben. Morphologische und stereologische Studien sowie einige tierexperimentelle Ansätze weisen Grenzen auf und können nicht vorbehaltlos auf den Menschen übertragen werden. Es besteht deshalb Bedarf in vitro Modelle zur humanen plazentaren Gefäßentwicklung zu entwerfen, die Studien über die verschiedenen Aspekte dieses Prozesses erlauben und folgende Themen adressieren: Trophoblast und Stromazellen, Interaktion mit endothelialen Progenitorzellen, Einfluss von Viren und Bakterien auf den Trophoblasten, sowie Auswirkungen von Alkohol, Nikotin und Drogen. Der vergleichende entwicklungsbiologische Ansatz geht auf die methodischen Aspekte der plazentaren Gefäßentwicklung ein und fasst eigene Erfahrungen der Autoren in diesem Forschungsfeld zusammen.

1 This review was presented at the Perinatal Society Meeting in Bonn, 2008.

Literatur

  • 1 Kaufmann P, Mayhew TM, Charnock-Jones DS. Aspects of Human Fetoplacental Vasculogenesis and Angiogenesis. II. Changes During Normal Pregnancy.  Placenta. 2004;  2 114-126
  • 2 Mayhew TM, Charnock-Jones DS, Kaufmann P. Aspects of Human Fetoplacental Vasculogenesis and Angiogenesis. III. Changes in Complicated Pregnancies.  Placenta. 2004;  25 127-139
  • 3 Charnock-Jones DS, Kaufmann P, Mayhew TM. Aspects of Human Fetoplacental Vasculogenesis and Angiogenesis. I. Molecular Regulation.  Placenta. 2004;  25 103-113
  • 4 Demir R, Kaufmann P, Castellucci M. et al . Fetal vasculogenesis and angiogenesis in human placental villi.  Acta Anatomica. 1989;  136 190-203
  • 5 Asan E, Kaymaz FF, Cakar AN. et al . Vasculogenesis in early human placental villi: an ultrastructural study.  Annals of Anatomy – Anatomischer Anzeiger. 1999;  181 549-554
  • 6 Kingdom J, Huppertz B, Seaward G. et al . Development of the placental villous tree and its consequences for fetal growth.  European Journal of Obstetrics & Gynecology and Reproductive Biology. 2000;  92 35-43
  • 7 Anson-Cartwright L, Dawson K, Holmyard D. et al . The glial cells missing-1 protein is essential for branching morphogenesis in the chorioallantoic placenta.  Nature genetics. 2000;  25 311-314
  • 8 Zygmunt M, Herr F, Keller-Schoenwetter S. et al . Characterization of Human Chorionic Gonadotropin as a Novel Angiogenic Factor.  J Clin Endocrinol Metab. 2002;  87 5290-5296
  • 9 Herr F, Baal N, Reisinger K. et al . hCG in the Regulation of Placental Angiogenesis. Results of an In Vitro Study.  Placenta. 2007;  28 S85-S93
  • 10 Herr F, Liang OD, Herrero J. et al . Possible Angiogenic Roles of Insulin-Like Growth Factor II and Its Receptors in Uterine Vascular Adaptation to Pregnancy.  J Clin Endocrinol Metab. 2003;  88 4811-4817
  • 11 Liang OD, Korff T, Eckhardt J. et al . Oncodevelopmental {alpha}-Fetoprotein Acts as a Selective Proangiogenic Factor on Endothelial Cell from the Fetomaternal Unit.  J Clin Endocrinol Metab. 2004;  89 1415-1422
  • 12 Jauniaux E, Watson A, Ozturk O. et al . In-vivo measurement of intrauterine gases and acid-base values early in human pregnancy.  Hum Reprod. 1999;  14 2901-2904
  • 13 Pfarrer C, Macara L, Leiser R. et al . Adaptive angiogenesis in placentas of heavy smokers.  The Lancet. 1999;  354 303
  • 14 Lips KS, Brüggmann D, Pfeil U. et al . Nicotinic acetylcholine receptors in rat and human placenta.  Placenta. 2005;  26 735-746
  • 15 Burd L, Roberts D, Olson M. et al . Ethanol and the placenta: A review.  The Journal of Maternal-Fetal & Neonatal Medicine. 2007;  20 361-375
  • 16 Park B, Gibbons HM, Mitchell MD. et al . Identification of the CB1 Cannabinoid Receptor and Fatty Acid Amide Hydrolase (FAAH) in the Human Placenta.  Placenta. 2003;  24 990-995
  • 17 Habayeb OMH, Taylor AH, Bell SC. et al . Expression of the Endocannabinoid System in Human First Trimester Placenta and Its Role in Trophoblast Proliferation.  Endocrinology. 2008;  149 5052-5060
  • 18 Krebs C, Longob LD, Leiser R. Term ovine placental vasculature: Comparison of sea level and high altitude conditions by corrosion cast and histomorphometry.  Placenta. 1997;  18 43-51
  • 19 Bergmann A, Zygmunt M, Clapp JF. Running throughout pregnancy: effect on placental villous vascular volume and cell proliferation.  Placenta. 2004;  25 694-698
  • 20 Kaufmann PA, Namdar M, Matthew F. et al . Novel Doppler Assessment of Intracoronary Volumetric Flow Reserve: Validation Against PET in Patients With or Without Flow-Dependent Vasodilation.  J Nucl Med. 2005;  46 1272-1277
  • 21 Langheinrich AC, Vorman S, Seidenstłcker J. et al . Quantitative 3D Micro-CT Imaging of the Human Feto-placental Vasculature in Intrauterine Growth Restriction.  Placenta. 2008;  29 937-941
  • 22 Langheinrich AC, Wienhard J, Vormann S. et al . Analysis of the Fetal Placental Vascular Tree by X-ray Micro-computed Tomography.  Placenta. 2004;  25 95-100
  • 23 Reynolds LP, Borowicz PP, Vonnahme KA. et al . Animal models of placental angiogenesis.  Placenta. 2005;  26 689-708
  • 24 Pfarrer C, Hirsch P, Guillomot M. et al . Interaction of Integrin Receptors with Extracellular Matrix is Involved in Trophoblast Giant Cell Migration in Bovine Placentomes.  Placenta. 2003;  24 588-597
  • 25 Carter AM. Animal Models of Human Placentation – A Review.  Placenta. 2007;  28 S41-S47
  • 26 Mayhew TM. Fetoplacental Angiogenesis During Gestation is Biphasic, Longitudinal and Occurs by Proliferation and Remodelling of Vascular Endothelial Cells.  Placenta. 2002;  23 742-750
  • 27 Zygmunt M, Herr F, Munstedt K. et al . Angiogenesis and vasculogenesis in pregnancy. European Journal of Obstetrics & Gynecology and Reproductive.  Biology. 2003;  110 S10-S18
  • 28 Baal N, Reisinger K, Jahr H. et al . Expression of transcription factor Oct-4 and other embryonic genes in CD133 positive cells from human umbilical cord blood.  Thromb Haemost. 2004;  92 767-775
  • 29 Miller RK, Genbacev O, Turner MA. et al . Human placental explants in culture: Approaches and assessments.  Placenta. 2005;  26 439-448.
  • 30 Chen CP, Aplin JD. Placental Extracellular Matrix: Gene Expression, Deposition by Placental Fibroblasts and the Effect of Oxygen.  Placenta. 2003;  24 31-25
  • 31 Campbell S, Park JH, Rowe J. et al . Chorionic Villus Sampling as a Source of Trophoblasts.  Placenta. 2007;  28 1118-1122
  • 32 Campbell S, Rowe J, Jackson CJ. et al . In vitro Migration of Cytotrophoblasts Through a Decidual Endothelial Cell Monolayer: The Role of Matrix Metalloproteinases.  Placenta. 2003;  2 306-315
  • 33 Pauly RR, Passaniti A, Crow M. et al . Experimental models that mimic the differentiation and dedifferentiation of vascular cells.  Circulation. 1992;  86 III68-III73
  • 34 Barnés CM, Huang S, Kaipainen A. et al . Evidence by molecular profiling for a placental origin of infantile hemangioma Proceedings of the National Academy of Sciences of the United States of America.  2005;  102 19097-19102
  • 35 Librach CL, Werb Z, Fitzgerald ML. et al . 92-kD type IV collagenase mediates invasion of human cytotrophoblasts.  J Cell Biol. 1991;  113 437-449
  • 36 Delia D, Lampugnani MG, Resnati M. et al . CD34 expression is regulated reciprocally with adhesion molecules in vascular endothelial cells in vitro.  Blood. 1993;  81 1001-1008
  • 37 Wolburg H, Neuhaus J, Kniesel U. et al . Modulation of tight junction structure in blood-brain barrier endothelial cells. Effects of tissue culture, second messengers and cocultured astrocytes.  J Cell Sci. 1994;  107 1347-1357
  • 38 Bates RC, Buret A, van Helden DF. et al . Apoptosis induced by inhibition of intercellular contact.  J Cell Biol. 1994;  125 403-415
  • 39 Mueller-Klieser W. Three-dimensional cell cultures: from molecular mechanisms to clinical applications.  Am J Physiol Cell Physiol. 1997;  273 C1109-C1123
  • 40 Korff T, Augustin HG. Integration of Endothelial Cells in Multicellular Spheroids Prevents Apoptosis and Induces Differentiation.  J Cell Biol. 1998;  143 1341-1352
  • 41 Fuller T, Korff T, Kilian A. et al . Forward EphB4 signaling in endothelial cells controls cellular repulsion and segregation from ephrinB2 positive cells.  J Cell Sci. 2003;  116 2461-2470
  • 42 Lam JT, Hemminki A, Kanerva A. et al . A three-dimensional assay for measurement of viral-induced oncolysis.  Cancer Gene Ther. 2007;  14 421-430
  • 43 Korff T, Krauss T, Augustin HG. Three-dimensional spheroidal culture of cytotrophoblast cells mimics the phenotype and differentiation of cytotrophoblasts from normal and preeclamptic pregnancies.  Experimental Cell Research. 2004;  297 415-423
  • 44 Baal N, Widmer-Teske R, McKinnon T. et al . In vitro spheroid model of placental vasculogenesis: does it work[quest].  Lab Invest. 2008;  89 152-163

1 This review was presented at the Perinatal Society Meeting in Bonn, 2008.

Correspondence

Marek ZygmuntMD, PhD 

Department of Obstetrics and Gynecology

University of Greifswald

Wollweberstraße 1

17475 Greifswald

Phone: +49/3834/86 65 00

Fax: +49/3834/86 65 01

Email: zygmunt@uni-greifswald.de

    >