Semin Thromb Hemost 2010; 36(3): 236-245
DOI: 10.1055/s-0030-1253447
© Thieme Medical Publishers

Morphological Heterogeneity of Endothelium

Dan Tse1 , Radu V. Stan1
  • 1Department of Pathology, Department of Microbiology and Immunology, Dartmouth Medical School, Hanover, New Hampshire
Further Information

Publication History

Publication Date:
20 May 2010 (online)

ABSTRACT

Vascular endothelium lines the entire cardiovascular system where it performs a series of vital functions by its control of microvascular permeability, vessel wall tone, coagulation and anticoagulation cascades, lipid homeostasis, inflammation, angiogenesis, and vasculogenesis. The vertebrate endothelial cells display a remarkable heterogeneity in terms of morphology, molecular makeup, and functional output. This heterogeneity was documented very early by electron microscopy studies that established morphologically recognizable endothelial phenotypes in vascular beds of different organs and, moreover, within the different vascular segments of each organ. This review discusses endothelial heterogeneity from a morphological standpoint and the latest developments in our understanding of the components, structure, and function of the endothelial specific organelles that form the hallmark of these phenotypes.

REFERENCES

  • 1 Simionescu M, Simionescu N, Palade G E. Morphometric data on the endothelium of blood capillaries.  J Cell Biol. 1974;  60(1) 128-152
  • 2 Aird W C. Phenotypic heterogeneity of the endothelium: II. Representative vascular beds.  Circ Res. 2007;  100(2) 174-190
  • 3 Aird W C. Phenotypic heterogeneity of the endothelium: I. Structure, function, and mechanisms.  Circ Res. 2007;  100(2) 158-173
  • 4 Bennett H S, Luft J H, Hampton J C. Morphological classifications of vertebrate blood capillaries.  Am J Physiol. 1959;  196(2) 381-390
  • 5 Florey L. Anatomy and physiology of small blood vessels.  Lav Ist Anat Istol Patol Univ Studi Perugia. 1965;  25(3) 133-147
  • 6 Cines D B, Pollak E S, Buck C A et al.. Endothelial cells in physiology and in the pathophysiology of vascular disorders.  Blood. 1998;  91(10) 3527-3561
  • 7 Pober J S. Endothelial activation: intracellular signaling pathways.  Arthritis Res. 2002;  4(suppl 3) S109-S116
  • 8 Palade G E. Fine structure of blood capillaries.  J Appl Phys. 1953;  24 1424
  • 9 Palade G E, Bruns R R. Structural modulations of plasmalemmal vesicles [abstract].  J Cell Biol. 1968;  37(3) 633-649
  • 10 Simionescu M, Simionescu N, Palade G E. Segmental differentiations of cell junctions in the vascular endothelium. The microvasculature.  J Cell Biol. 1975;  67(3) 863-885
  • 11 Nagy J A, Benjamin L, Zeng H, Dvorak A M, Dvorak H F. Vascular permeability, vascular hyperpermeability and angiogenesis.  Angiogenesis. 2008;  11(2) 109-119
  • 12 Milici A J, L'Hernault N, Palade G E. Surface densities of diaphragmed fenestrae and transendothelial channels in different murine capillary beds.  Circ Res. 1985;  56(5) 709-717
  • 13 Milici A J, Peters K R, Palade G E. The endothelial pocket. A new structure in fenestrated endothelia.  Cell Tissue Res. 1986;  244(3) 493-499
  • 14 Clementi F, Palade G E. Intestinal capillaries. II. Structural effects of EDTA and histamine.  J Cell Biol. 1969;  42(3) 706-714
  • 15 Clementi F, Palade G E. Intestinal capillaries. I. Permeability to peroxidase and ferritin.  J Cell Biol. 1969;  41(1) 33-58
  • 16 Gautier A, Bernhard W, Oberling C. Sur l'existence d'un appareil lacunaire pericapillaire du glomerule de Malpighi, révèlé par la microscopie électronique.  Comptes rendus de la séances de la Société de Biologie. 1950;  144 1605-1607
  • 17 Ballermann B J, Stan R V. Resolved: capillary endothelium is a major contributor to the glomerular filtration barrier.  J Am Soc Nephrol. 2007;  18(9) 2432-2438
  • 18 Braet F, Wisse E. Structural and functional aspects of liver sinusoidal endothelial cell fenestrae: a review.  Comp Hepatol. 2002;  1(1) 1
  • 19 Orci L, Pepper M S. Microscopy: an art?.  Nat Rev Mol Cell Biol. 2002;  3(2) 133-137
  • 20 Stan R V, Tkachenko E, Niesman I R. PV1 is a key structural component for the formation of the stomatal and fenestral diaphragms.  Mol Biol Cell. 2004;  15(8) 3615-3630
  • 21 Ioannidou S, Deinhardt K, Miotla J et al.. An in vitro assay reveals a role for the diaphragm protein PV-1 in endothelial fenestra morphogenesis.  Proc Natl Acad Sci U S A. 2006;  103(45) 16770-16775
  • 22 Maul G G. Structure and formation of pores in fenestrated capillaries.  J Ultrastruct Res. 1971;  36(5) 768-782
  • 23 Bearer E L, Orci L. Endothelial fenestral diaphragms: a quick-freeze, deep-etch study.  J Cell Biol. 1985;  100(2) 418-428
  • 24 Apkarian R P. Analysis of high quality monatomic chromium films used in biological high resolution scanning electron microscopy.  Scanning Microsc. 1994;  8(2) 289-299 discussion 299-230
  • 25 Friederici H H. On the diaphragm across fenestrae of capillary endothelium.  J Ultrastruct Res. 1969;  27(3) 373-375
  • 26 Rostgaard J, Qvortrup K. Electron microscopic demonstrations of filamentous molecular sieve plugs in capillary fenestrae.  Microvasc Res. 1997;  53(1) 1-13
  • 27 Simionescu M, Simionescu N, Palade G E. Differentiated microdomains on the luminal surface of capillary endothelium: distribution of lectin receptors.  J Cell Biol. 1982;  94(2) 406-413
  • 28 Pino R M. The cell surface of a restrictive fenestrated endothelium. I. Distribution of lectin-receptor monosaccharides on the choriocapillaris.  Cell Tissue Res. 1986;  243(1) 145-155
  • 29 Furuya S. Ultrastructure and formation of diaphragmed fenestrae in cultured endothelial cells of bovine adrenal medulla.  Cell Tissue Res. 1990;  261(1) 97-105
  • 30 Bankston P W, Porter G A, Milici A J, Palade G E. Differential and specific labeling of epithelial and vascular endothelial cells of the rat lung by Lycopersicon esculentum and Griffonia simplicifolia I lectins.  Eur J Cell Biol. 1991;  54(2) 187-195
  • 31 Bankston P W, Milici A J. A survey of the binding of polycationic ferritin in several fenestrated capillary beds: indication of heterogeneity in the luminal glycocalyx of fenestral diaphragms.  Microvasc Res. 1983;  26(1) 36-48
  • 32 Simionescu M, Simionescu N, Palade G E. Preferential distribution of anionic sites on the basement membrane and the abluminal aspect of the endothelium in fenestrated capillaries.  J Cell Biol. 1982;  95(2 Pt 1) 425-434
  • 33 Simionescu M, Simionescu N, Palade G E. Partial chemical characterization of the anionic sites in the basal lamina of fenestrated capillaries.  Microvasc Res. 1984;  28(3) 352-367
  • 34 Palade G F, Simionescu M, Simionescu N. Differentiated microdomains on the luminal surface of the capillary endothelium.  Biorheology. 1981;  18(3–6) 563-568
  • 35 Simionescu N, Simionescu M, Palade G E. Differentiated microdomains on the luminal surface of the capillary endothelium. I. Preferential distribution of anionic sites.  J Cell Biol. 1981;  90(3) 605-613
  • 36 Simionescu M, Simionescu N, Silbert J E, Palade G E. Differentiated microdomains on the luminal surface of the capillary endothelium. II. Partial characterization of their anionic sites.  J Cell Biol. 1981;  90(3) 614-621
  • 37 Stan R V, Kubitza M, Palade G E. PV-1 is a component of the fenestral and stomatal diaphragms in fenestrated endothelia.  Proc Natl Acad Sci U S A. 1999;  96(23) 13203-13207
  • 38 Stan R V, Arden K C, Palade G E. cDNA and protein sequence, genomic organization, and analysis of cis regulatory elements of mouse and human PLVAP genes.  Genomics. 2001;  72(3) 304-313
  • 39 Stan R V. Structure of caveolae.  Biochim Biophys Acta. 2005;  1746(3) 334-348
  • 40 Stan R V. Channels across endothelial cells. In: Baluska F, Volkmann D, Barlowe PW Cell-Cell Channels. Georgetown, TX; Landes Biosciences 2006: 271-278
  • 41 Stan R V. Endothelial stomatal and fenestral diaphragms in normal vessels and angiogenesis.  J Cell Mol Med. 2007;  11(4) 621-643
  • 42 Oberling C, Gautier A, Bernhardt W. La structure des capillaires glomerulaire vue au microscope electronique.  Presse Médicale Parisienne. 1951;  59 938-940
  • 43 Pease D C. Electron microscopy of the vascular bed of the kidney cortex.  Anat Rec. 1955;  121(4) 701-721
  • 44 Yamada E. The fine structure of the renal glomerulus of the mouse.  J Biophys Biochem Cytol. 1955;  1(6) 551-566
  • 45 Reeves W H, Kanwar Y S, Farquhar M G. Assembly of the glomerular filtration surface. Differentiation of anionic sites in glomerular capillaries of newborn rat kidney.  J Cell Biol. 1980;  85(3) 735-753
  • 46 Rostgaard J, Qvortrup K. Sieve plugs in fenestrae of glomerular capillaries—site of the filtration barrier?.  Cells Tissues Organs. 2002;  170(2–3) 132-138
  • 47 Ichimura K, Stan R V, Kurihara H, Sakai T. Glomerular endothelial cells form diaphragms during development and pathologic conditions.  J Am Soc Nephrol. 2008;  19(8) 1463-1471
  • 48 Wisse E. An ultrastructural characterization of the endothelial cell in the rat liver sinusoid under normal and various experimental conditions, as a contribution to the distinction between endothelial and Kupffer cells.  J Ultrastruct Res. 1972;  38(5) 528-562
  • 49 Bankston P W, Pino R M. The development of the sinusoids of fetal rat liver: morphology of endothelial cells, Kupffer cells, and the transmural migration of blood cells into the sinusoids.  Am J Anat. 1980;  159(1) 1-15
  • 50 Reeves W, Caulfield J P, Farquhar M G. Differentiation of epithelial foot processes and filtration slits: sequential appearance of occluding junctions, epithelial polyanion, and slit membranes in developing glomeruli.  Lab Invest. 1978;  39(2) 90-100
  • 51 Parton R G, Simons K. The multiple faces of caveolae.  Nat Rev Mol Cell Biol. 2007;  8(3) 185-194
  • 52 Bruns R R, Palade G E. Studies on blood capillaries. II. Transport of ferritin molecules across the wall of muscle capillaries.  J Cell Biol. 1968;  37(2) 277-299
  • 53 Bruns R R, Palade G E. Studies on blood capillaries. I. General organization of blood capillaries in muscle.  J Cell Biol. 1968;  37(2) 244-276
  • 54 Noguchi Y, Shibata Y, Yamamoto T. Endothelial vesicular system in rapid-frozen muscle capillaries revealed by serial sectioning and deep etching.  Anat Rec. 1987;  217(4) 355-360
  • 55 Pelkmans L, Helenius A. Endocytosis via caveolae.  Traffic. 2002;  3(5) 311-320
  • 56 Pelkmans L, Kartenbeck J, Helenius A. Caveolar endocytosis of simian virus 40 reveals a new two-step vesicular-transport pathway to the ER.  Nat Cell Biol. 2001;  3(5) 473-483
  • 57 Pelkmans L, Zerial M. Kinase-regulated quantal assemblies and kiss-and-run recycling of caveolae.  Nature. 2005;  436(7047) 128-133
  • 58 Roberts W G, Palade G E. Endothelial fenestrae and fenestral diaphragms. In: Rissau W, Rubanyi GM Morphogenesis of Endothelium. Amsterdam, The Netherlands; Hardwood Academic Publishers 2000: 23-41
  • 59 Dvorak A M, Kohn S, Morgan E S, Fox P, Nagy J A, Dvorak H F. The vesiculo-vacuolar organelle (VVO): a distinct endothelial cell structure that provides a transcellular pathway for macromolecular extravasation.  J Leukoc Biol. 1996;  59(1) 100-115
  • 60 Feng D, Nagy J A, Pyne K, Hammel I, Dvorak H F, Dvorak A M. Pathways of macromolecular extravasation across microvascular endothelium in response to VPF/VEGF and other vasoactive mediators.  Microcirculation. 1999;  6(1) 23-44
  • 61 Kohn S, Nagy J A, Dvorak H F, Dvorak A M. Pathways of macromolecular tracer transport across venules and small veins. Structural basis for the hyperpermeability of tumor blood vessels.  Lab Invest. 1992;  67(5) 596-607
  • 62 Vasile E, Antohe F. An ultrastructural study of beta-very low density lipoprotein uptake and transport by valvular endothelium of hyperlipidemic rabbits.  J Submicrosc Cytol Pathol. 1991;  23(2) 279-287
  • 63 Chang S H, Feng D, Nagy J A, Sciuto T E, Dvorak A M, Dvorak H F. Vascular permeability and pathological angiogenesis in caveolin-1-null mice.  Am J Pathol. 2009;  175(4) 1768-1776
  • 64 Stan R V, Ghitescu L, Jacobson B S, Palade G E. Isolation, cloning, and localization of rat PV-1, a novel endothelial caveolar protein.  J Cell Biol. 1999;  145(6) 1189-1198
  • 65 Ghitescu L D, Crine P, Jacobson B S. Antibodies specific to the plasma membrane of rat lung microvascular endothelium.  Exp Cell Res. 1997;  232(1) 47-55
  • 66 Stan R V, Roberts W G, Predescu D et al.. Immunoisolation and partial characterization of endothelial plasmalemmal vesicles (caveolae).  Mol Biol Cell. 1997;  8(4) 595-605
  • 67 Hnasko R, McFarland M, Ben-Jonathan N. Distribution and characterization of plasmalemma vesicle protein-1 in rat endocrine glands.  J Endocrinol. 2002;  175(3) 649-661
  • 68 Duijvestijn A M, Kerkhove M, Bargatze R F, Butcher E C. Lymphoid tissue- and inflammation-specific endothelial cell differentiation defined by monoclonal antibodies.  J Immunol. 1987;  138(3) 713-719
  • 69 Hallmann R, Mayer D N, Berg E L, Broermann R, Butcher E C. Novel mouse endothelial cell surface marker is suppressed during differentiation of the blood brain barrier.  Dev Dyn. 1995;  202(4) 325-332
  • 70 Niemelä H, Elima K, Henttinen T, Irjala H, Salmi M, Jalkanen S. Molecular identification of PAL-E, a widely used endothelial-cell marker.  Blood. 2005;  106(10) 3405-3409
  • 71 Keuschnigg J, Henttinen T, Auvinen K, Karikoski M, Salmi M, Jalkanen S. The prototype endothelial marker PAL-E is a leukocyte trafficking molecule.  Blood. 2009;  114(2) 478-484
  • 72 Schlingemann R O, Dingjan G M, Emeis J J, Blok J, Warnaar S O, Ruiter D J. Monoclonal antibody PAL-E specific for endothelium.  Lab Invest. 1985;  52(1) 71-76
  • 73 Stan R V. Multiple PV1 dimers reside in the same stomatal or fenestral diaphragm.  Am J Physiol Heart Circ Physiol. 2004;  286(4) H1347-H1353
  • 74 Rosenberg R D, Shworak N W, Liu J, Schwartz J J, Zhang L. Heparan sulfate proteoglycans of the cardiovascular system. Specific structures emerge but how is synthesis regulated?.  J Clin Invest. 1997;  99(9) 2062-2070
  • 75 Esko J D, Lindahl U. Molecular diversity of heparan sulfate.  J Clin Invest. 2001;  108(2) 169-173
  • 76 Sörensson J, Fierlbeck W, Heider T et al.. Glomerular endothelial fenestrae in vivo are not formed from caveolae.  J Am Soc Nephrol. 2002;  13(11) 2639-2647
  • 77 Zhao Y Y, Liu Y, Stan R V et al.. Defects in caveolin-1 cause dilated cardiomyopathy and pulmonary hypertension in knockout mice.  Proc Natl Acad Sci U S A. 2002;  99(17) 11375-11380
  • 78 Roberts W G, Delaat J, Nagane M, Huang S, Cavenee W K, Palade G E. Host microvasculature influence on tumor vascular morphology and endothelial gene expression.  Am J Pathol. 1998;  153(4) 1239-1248
  • 79 Roberts W G, Palade G E. Increased microvascular permeability and endothelial fenestration induced by vascular endothelial growth factor.  J Cell Sci. 1995;  108(Pt 6) 2369-2379
  • 80 Roberts W G, Palade G E. Neovasculature induced by vascular endothelial growth factor is fenestrated.  Cancer Res. 1997;  57(4) 765-772

Radu V StanM.D. 

Dartmouth Medical School, Department of Pathology

HB 7600, Borwell 502W, 1 Medical Center Drive, Hanover, NH 92093-0651

Email: Radu.V.Stan@Dartmouth.edu

    >