Endoscopy 2011; 43(7): 604-616
DOI: 10.1055/s-0030-1256382
Original article

© Georg Thieme Verlag KG Stuttgart · New York

Low dose endoluminal photodynamic therapy improves murine T cell-mediated colitis

L.  Favre1 , F.  Borle2 , D.  Velin3 , D.  Bachmann3 , H.  Bouzourene4 , G.  Wagnieres2 , H.  van den Bergh2 , P.  Ballabeni5 , T.  Gabrecht2 , P.  Michetti3 , S.  Schreiber6 , M.-A.  Ortner7
  • 1Nutrition and Health Department, Nestle Research Centre, Lausanne, Switzerland
  • 2Photomedicine Group, Swiss Federal Institute of Science and Technologies (EPFL), Lausanne, Switzerland
  • 3Department of Gastroenterology and Hepatology, University Hospital (CHUV), Lausanne, Switzerland
  • 4Institute of Pathology, University Hospital (CHUV), Lausanne, Switzerland
  • 5Institute of Social and Preventive Medicine, University Hospital (CHUV), Lausanne, Switzerland
  • 6Institute of Clinical Molecular Biology, Christian-Albrechts University, Kiel, Germany
  • 7Department of Gastroenterology, DMLL, University Hospital “Inselspital” Bern, Switzerland
Further Information

Publication History

submitted 30 September 2008

accepted after revision 31 January 2011

Publication Date:
27 May 2011 (online)

Background and study aims: Low dose photodynamic therapy (LDPDT) may modify the mucosal immune response and may thus provide a therapy for Crohn’s disease. We evaluated the efficacy and safety of this technique in a murine T cell-mediated colitis model.

Methods: The safety of LDPDT was first tested in BALB/c mice. Naïve T cells were used to induce colitis in mice with severe combined immunodeficiency, which were followed up endoscopically, and a murine endoscopic index of colitis (MEIC) was developed. The efficacy of LDPDT (10 J/cm2; delta-aminolevulinic acid, 15 mg/kg bodyweight) was then tested on mice with moderate colitis, while a disease control group received no treatment. The MEIC, weight, length, and histology of the colon, cytokine expression indices, number of mucosal CD4+ T cells, percentage of apoptotic CD4+ T cells, body weight, and systemic side effects were evaluated.

Results: LDPDT improved the MEIC (P = 0.011) and the histological score (P = 0.025), diminished the expression indices of the proinflammatory cytokines, interleukin-6 (P = 0.042), interleukin-17 (P = 0.029), and interferon-gamma (P = 0.014), decreased the number of mucosal CD4+ T cells, and increased the percentage of apoptotic CD4+ T cells compared with the disease control group. No local or systemic side effects occurred.

Conclusion: LDPDT improves murine T cell-mediated colitis, decreases the proinflammatory cytokines interleukin-6, interleukin-17, and interferon-gamma, and decreases the number of CD4+ T cells. No adverse events were observed. Therefore, this technique is now being evaluated in patients with inflammatory bowel disease.

References

  • 1 Kucharzik T, Maaser C, Lügering A et al. Recent understanding of IBD pathogenesis: implications for future therapies.  Inflamm Bowel Dis. 2006;  12 1068-1083
  • 2 Young Y, Abreu M T. Advances in the pathogenesis of inflammatory bowel disease.  Curr Gastroenterol Rep. 2006;  8 470-477
  • 3 Strober W, Fuss I, Mannon P. The fundamental basis of inflammatory bowel disease.  J Clin Invest. 2007;  117 514-521
  • 4 Xavier R J, Podolsky D K. Unravelling the pathogenesis of inflammatory bowel disease.  Nature. 2007;  448 427-434
  • 5 Iwakura Y, Ishigame H. The IL-23/IL-17 axis in inflammation.  J Clin Invest. 2006;  116 1218-1222
  • 6 Yen D, Cheung J, Scheerens H et al. IL-23 is essential for T cell-mediated colitis and promotes inflammation via IL-17 and IL-6.  J Clin Invest. 2006;  116 1310-1316
  • 7 Duerr R H, Taylor K D, Brant S R et al. A genome-wide association study identifies IL23R as an inflammatory bowel disease gene.  Science. 2006;  314 1461-1463
  • 8 Sturm A, Fiocchi C. Life and death in the gut: more killing, less Crohn’s.  Gut. 2002;  50 148-149
  • 9 Danese S, Sans M, de la Motte C et al. Angiogenesis as a novel component of inflammatory bowel disease pathogenesis.  Gastroenterology. 2006;  130 2060-2073
  • 10 Targan S R. Current limitations of IBD treatment: where do we go from here?.  Ann NY Acad Sci. 2006;  1072 1-8
  • 11 Colombel J F, Sandborn W J, Rutgeerts P et al. Adalimumab for maintenance of clinical response and remission in patients with Crohn’s disease: the CHARM trial.  Gastroenterology. 2007;  132 52-65
  • 12 Hanauer S B, Feagan B G, Lichtenstein G R et al. ACCENT I Study Group. Maintenance infliximab for Crohn’s disease: The ACCENT I randomized trial.  Lancet. 2002;  359 1541-1549
  • 13 Schreiber S, Khaliq-Kareemi M, Lawrence I C et al. PRECISE 2 Study Investigators. Maintenance therapy with certolizumab pegol for Crohn’s disease.  NEJM. 2007;  357 239-250
  • 14 Baert F, Norman M, Vermeire S et al. Influence of immunogenicity on the long-term efficacy of infliximab in Crohn’s disease.  NEJM. 2003;  348 601-608
  • 15 Aksamit A J. Review of progressive multifocal leukoencephalopathy and natalizumab.  Neurologist. 2006;  12 293-298
  • 16 Rychly D J, DiPiro J T. Infection associated with tumor necrosis factor-alpha antagonists.  Pharmacotherapy. 2005;  25 1181-1192
  • 17 Mackey A C, Green L, Liang L C et al. Hepatosplenic T cell lymphoma associated with infliximab use in young patients treated for inflammatory bowel disease.  J Pediatr Gastroenterol Nutr. 2007;  44 265-267
  • 18 Ortner M, Caca K, Berr F et al. Photodynamic therapy for non-resectable cholangiocarcinoma: a randomized prospective study.  Gastroenterology. 2003;  125 1355-1363
  • 19 Eleouet S, Carre J, Vonarx V et al. Delta-aminolevulinic acid-induced fluorescence in normal human lymphocytes.  J Photochem Photobiol B. 1997;  41 22-29
  • 20 Hunt D W, Jiang H, Granville D J et al. Consequences of the photodynamic treatment of resting and activated peripheral T lymphocytes.  Immunopharmacology. 1999;  41 31-44
  • 21 Jiang H, Granville D J, North J R et al. Selective action of the photosensitizer QLT0074 on activated human T lymphocytes.  Photochem Photobiol. 2002;  76 224-231
  • 22 Hryhorenko E A, Oseroff A R, Morgan J et al. Deletion of alloantigen-activated cells by aminolevulinic acid-based photodynamic therapy.  Photochem Photobiol. 1999;  69 560-565
  • 23 Bissonnette R, Tremblay J F, Juzenas P et al. Systemic photodynamic therapy with aminolevulinic acid induces apoptosis in lesional T-lymphocytes of psoriatic plaques.  J Invest Dermatol. 2002;  119 77-83
  • 24 Hunt D W, Chan A H. Influence of photodynamic therapy on immunological aspects of disease – an update.  Expert Opin Investig Drugs. 2000;  9 807-817
  • 25 Musser D A, Oseroff A R. Characteristics of the immunosuppression induced by cutaneous photodynamic therapy: persistence, antigen specificity and cell type involved.  Photochem Photobiol. 2001;  73 518-524
  • 26 Simkin G O, Tao J S, Lervy J G et al. IL-10 contributes to the inhibition of contact hypersensitivity in mice treated with photodynamic therapy.  J Immunol. 2000;  164 2457-2462
  • 27 Jori G. Photodynamic therapy of microbial infections: state of the art and perspectives.  J Environ Pathol Toxicol Oncol. 2006;  25 505-519
  • 28 Pegaz B, Debefve E, Borle F et al. Preclinical evaluation of a novel water-soluble chlorin E6 derivate (BLC 1010) as photosensitizer for the closure of the neovessels.  Photochem Photobiol. 2005;  81 1505-1510
  • 29 Boehncke W H, Elshorst-Schmidt T, Kaufmann R. Systemic photodynamic therapy is a safe and effective treatment of psoriasis.  Arch Dermatol. 2000;  136 271-272
  • 30 Funke B, Jungel A, Schastak S et al. Transdermal photodynamic therapy – a treatment option for rheumatoid destruction of small joints?.  Lasers Surg Med. 2006;  38 866-874
  • 31 Ratkay L G, Chowdhary R K, Iamaroon A et al. Amelioration of antigen-induced arthritis in rabbits by induction of apoptosis of inflammatory cells with local application of transdermal photodynamic therapy.  Arthritis Rheum. 1998;  41 525-534
  • 32 Chowdhary R K, Ratkay L G, Neyndorff H C et al. The use of transcutaneous photodynamic therapy in the prevention of adjuvant-enhanced arthritis in MRL/lpr mice.  Clin Immunol Immunopathol. 1994;  72 255-263
  • 33 Ratkay L G, Chowdhary R K, Neyendorff H C et al. Photodynamic therapy: A comparison with other immunomodulatory treatments of adjuvant-enhanced arthritis in MRL-lpr mice.  Clin Exp Immunol. 1994;  95 373-377
  • 34 Hunt D W, Jiang H, Granville D J et al. Consequence of the photodynamic treatment of resting and activated peripheral T lymphocytes.  Immunopharmacology. 1999;  41 31-44
  • 35 Saripalli Y V, Gaspari A A. Focus on: biologicals that affect therapeutic agents in dermatology.  J Drugs Dermatol. 2005;  4 233-245
  • 36 Andreakos E, Foxwell B, Feldmann M. Is targeting Toll-like receptors and their signaling pathway a useful therapeutic approach to modulating cytokine-driven inflammation?.  Immunol Rev. 2004;  202 250-265
  • 37 Powrie F, Leach M W, Mauze S et al. Phenotypically distinct subsets of CD4+ T cells induce or protect from chronic intestinal inflammation in C. B-17 SCID mice.  Int Immunol. 1993;  5 1461-1471
  • 38 Kirdaite G, Lange N, Busso N et al. Protoporphyrin IX photodynamic therapy for synovitis.  Arthritis Rheum. 2002;  46 1371-1378
  • 39 Fukuda H, Casas A, Batlle A. Aminolaevulinic acid: from its unique biological function to its star role in photodynamic therapy.  Int J Biochem Cell Biol. 2005;  37 272-276
  • 40 Wirtz S, Becker C, Blumberg R et al. Treatment of T cell-dependent experimental colitis in SCID mice by local administration of an adenovirus expressing IL-18 antisense mRNA.  J Immunol. 2002;  168 411-420
  • 41 Wächtershäuser A, Stein J. Rationale for the luminal provision of butyrate in intestinal diseases.  Eur J Nutr. 2000;  39 164-171
  • 42 Verdu E F, Bercik B, Cukrowska B et al. Oral administration of antigens from intestinal flora anaerobic bacteria reduces the severity of experimental acute colitis in BALB/c mice.  Clin Exp Immunol. 2000;  120 46-50
  • 43 Vermes I, Haanen C, Steffens-Nakken H et al. A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V.  J Immunol Methods. 1995;  184 39-51
  • 44 D’Haens G, Van Deventer S, Van Hogezand R et al. Endoscopic and histological healing with infliximab anti-tumour necrosis factor antibodies in Crohn’s Disease. A European multicenter trial.  Gastroenterology. 1999;  116 1029-1034
  • 45 Fossiez F, Banchereau J, Murray R et al. Interleukin-17.  Int Rev Immunol. 1998;  16 541-551
  • 46 Fujino S, Andoh A, Bamba S et al. Increased expression of interleukin 17 in inflammatory bowel disease.  Gut. 2003;  52 65-70
  • 47 Langrish C L, Chen Y, Blumenschein W M et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation.  J Exp Med. 2005;  201 233-240
  • 48 Becker C, Dornhoff H, Neufert C et al. Cutting edge: Il-23 cross-regulates IL-12 production in T cell-dependent experimental colitis.  J Immunol. 2006;  177 2760-2764
  • 49 Hunt D W, Chan A H. Immunological aspects of photodynamic therapy.  Photodynamic News. 1998;  1 2-4
  • 50 Yusuf N, Katiyar S K, Elmets C A. The immunosuppressive effects of phthalocyanine photodynamic therapy in mice are mediated by CD4+ and CD8+ T cells and can be adoptively transferred to naïve recipients.  Photochem Photobiol. 2008;  84 366-370
  • 51 Hryhorenko E A, Rittenhouse-Diakun K, Harvey N S et al. Characterization of endogenous protoporphyrin IX induced by delta-aminolevulinic acid in resting and activated peripheral blood lymphocytes by four-color flow cytometry.  Photochem Photobiol. 1998;  67 565-572
  • 52 Granville D J, Carthy C M, Jiang H et al. Nuclear-factor-kappa B activation by the photochemotherapeutic agent verteporfin.  Blood. 2000;  95 256-262
  • 53 Kessel D, Luo Y. Photodynamic therapy: a mitochondrial inducer of apoptosis.  Cell Death Differ. 1999;  6 28-35
  • 54 Granville D J, Jiang H, An M T et al. Bcl-2 overexpression blocks caspase activation and downstream apoptotic events instigated by photodynamic therapy.  Br J Cancer. 1999;  79 95-100
  • 55 Itoh J, de la Motte C, Strong S A et al. Decreased Bax expression by mucosal T cells favors resistance to apoptosis in Crohn’s disease (CD).  Gut. 2001;  49 35-41
  • 56 Jiang H, Granville D J, McManus B M et al. Selective depletion of a thymocyte subset in vitro with an immunomodulatory photosensitizer.  Clin Immunol. 1999;  91 178-187
  • 57 Lugering A, Lebiedz P, Koch S et al. Apoptosis as a therapeutic tool in IBD?.  Ann NY Acad Sci. 2006;  1072 62-77
  • 58 Ina K, Itoh J, Fukushima K et al. Resistance of Crohn’s disease T-cells to multiple apoptotic stimuli is associated with a Bcl-2/Bax mucosal imbalance.  J Immunol. 1999;  163 1081-1090
  • 59 Hryhorenko E A, Oseroff A R, Morgan J et al. Antigen specific and nonspecific modulation of the immune response by aminolevulinic acid based photodynamic therapy.  Immunopharmacology. 1998;  40 231-240
  • 60 Wong T W, Tracy E, Oseroff A R et al. Photodynamic therapy mediates immediate loss of cellular responsiveness to cytokines and growth factors.  Cancer Res. 2003;  63 3812-3818
  • 61 King D E, Jiang H, Simkin G O et al. Photodynamic alteration on the surface receptor expression pattern of murine splenic dendritic cells.  Scand J Immunol. 1999;  49 184-192
  • 62 Panjehpour M, Overholt B F, Phan M N et al. Optimization of light dosimetry for photodynamic therapy of Barrett’s esophagus: efficacy vs. incidence of stricture after treatment.  Gastrointestinal Endosc. 2005;  61 13-18
  • 63 Perry Y, Epperly M W, Fernando H C et al. Photodynamic therapy induced esophageal stricture – an animal model: from mouse to pig.  J Surg Res. 2005;  123 67-74
  • 64 Mackenzie G D, Jamieson N F, Novelli M R et al. How light dosimetry influences the efficacy of photodynamic therapy with 5-aminolaevulinic acid for ablation of high-grade dysplasia in Barrett’s esophagus.  Lasers Med Sci. 2008;  23 203-210

M.-A. OrtnerMD 

Department of Gastroenterology, DMLL
University Hospital “Inselspital” Bern

Murtenstrasse
CH-3010 Bern
Germany

Fax: +41-31-6329765

Email: ma.ortner@bluewin.ch

    >