Horm Metab Res 2010; 42(10): 731-735
DOI: 10.1055/s-0030-1261929
Animals, Clinical

© Georg Thieme Verlag KG Stuttgart · New York

Combination Therapy with Nateglinide and Vildagliptin Improves Postprandial Metabolic Derangements in Zucker Fatty Rats

K. Miura1 , Y. Kitahara1 , S. Yamagishi2
  • 1Pharmaceutical Research Laboratories, Ajinomoto, Kawasaki, Japan
  • 2Department of Pathophysiology and Therapeutics of Diabetic Vascular Complications, Kurume University School of Medicine, Kurume, Japan
Further Information

Publication History

received 05.04.2010

accepted 21.06.2010

Publication Date:
12 July 2010 (online)

Abstract

Postprandial metabolic derangements are one of the risk factors of cardiovascular disease in humans. Insulin resistance and/or impaired early-phase insulin secretion are major determinants of postprandial metabolic derangements. In this study, we investigated the potential utility of combination therapy with vildagliptin, a dipeptidyl peptidase IV (DPP-IV) inhibitor and nateglinide, a rapid-onset/short-duration insulinotropic agent, for the treatment of postprandial metabolic derangements in Zucker Fatty (ZF) rats, an animal model of obesity with insulin resistance. ZF rats fed twice daily with or without high fat diet (HFD) were given vehicle, 50 mg/kg of nateglinide, 10 mg/kg of vildagliptin, or both for 6 weeks. Combination therapy with nateglinide and vildagliptin for 2 weeks ameliorated postprandial hyperglycemia, hypertriglyceridemia, and elevation of free fatty acid in ZF rats fed with HFD. 6-week treatment with nateglinide and vildagliptin not only increased hepatic levels of phosphorylated forkhead box protein 1A (FOXO1A), but also reduced triglyceride contents in the liver. Combination therapy also prevented the loss of pancreatic islet mass in ZF rats fed with HFD. These observations demonstrate that combination therapy with nateglinide and vildagliptin may improve postprandial metabolic derangements probably by ameliorating early phase of insulin secretion and hepatic insulin resistance, respectively, in ZF rats fed with HFD. Since combination therapy with nateglinide and vildagliptin restored the decrease in pancreatic beta cell mass, our present findings suggest that combination therapy could be a promising therapeutic strategy for postprandial dysmetabolism associated with obese and insulin resistance.

References

  • 1 Jessani S, Millane T, Lip GY. Vascular damage in impaired glucose tolerance: an unappreciated phenomenon?.  Curr Pharm Des. 2009;  15 3417-3432
  • 2 Yamagishi S, Matsui T, Ueda S, Fukami K, Okuda S. Clinical utility of acarbose, an alpha-glucosidase inhibitor in cardiometabolic disorders.  Curr Drug Metab. 2009;  10 159-163
  • 3 Delorme S, Chiasson JL. Acarbose in the prevention of cardiovascular disease in subjects with impaired glucose tolerance and type 2 diabetes mellitus.  Curr Opin Pharmacol. 2005;  5 184-189
  • 4 Bae JH, Bassenge E, Kim KB, Kim YN, Kim KS, Lee HJ, Moon KC, Lee MS, Park KY, Schwemmer M. Postprandial hypertriglyceridemia impairs endothelial function by enhanced oxidant stress.  Atherosclerosis. 2001;  155 517-523
  • 5 Ceriello A, Taboga C, Tonutti L, Quagliaro L, Piconi L, Bais B, Da Ros R, Motz E. Evidence for an independent and cumulative effect of postprandial hypertriglyceridemia and hyperglycemia on endothelial dysfunction and oxidative stress generation: effects of short- and long-term simvastatin treatment.  Circulation. 2002;  106 1211-1218
  • 6 Pleiner J, Schaller G, Mittermayer F, Bayerle-Eder M, Roden M, Wolzt M. FFA-induced endothelial dysfunction can be corrected by vitamin C.  J Clin Endocrinol Metab. 2002;  87 2913-2917
  • 7 Nordestgaard BG, Benn M, Schnohr P, Tybjaerg-Hansen A. Nonfasting triglycerides and risk of myocardial infarction, ischemic heart disease, and death in men and women.  JAMA. 2007;  298 299-308
  • 8 Stampfer MJ, Krauss RM, Ma J, Blanche PJ, Holl LG, Sacks FM, Hennekens CH. A prospective study of triglyceride level, low-density lipoprotein particle diameter, and risk of myocardial infarction.  JAMA. 1996;  276 882-888
  • 9 Pirro M, Mauriège P, Tchernof A, Cantin B, Dagenais GR, Després JP, Lamarche B. Plasma free fatty acid levels and the risk of ischemic heart disease in men: prospective results from the Québec Cardiovascular Study.  Atherosclerosis. 2002;  160 377-384
  • 10 Banerjee M, Younis N, Soran H. Vildagliptin in clinical practice: a review of literature.  Expert Opin Pharmacother. 2009;  10 2745-2757
  • 11 Kim W, Egan JM. The role of incretins in glucose homeostasis and diabetes treatment.  Pharmacol Rev. 2008;  60 470-512
  • 12 Utzschneider KM, Tong J, Montgomery B, Udayasankar J, Gerchman F, Marcovina SM, Watson CE, Ligueros-Saylan MA, Foley JE, Holst JJ, Deacon CF, Kahn SE. The dipeptidyl peptidase-4 inhibitor vildagliptin improves beta-cell function and insulin sensitivity in subjects with impaired fasting glucose.  Diabetes Care. 2008;  31 108-113
  • 13 Azuma K, Rádiková Z, Mancino J, Toledo FG, Thomas E, Kangani C, Dalla Man C, Cobelli C, Holst JJ, Deacon CF, He Y, Ligueros-Saylan M, Serra D, Foley JE, Kelley DE. Measurements of islet function and glucose metabolism with the dipeptidyl peptidase 4 inhibitor vildagliptin in patients with type 2 diabetes.  J Clin Endocrinol Metab. 2008;  93 459-464
  • 14 Tushuizen ME, Diamant M, Heine RJ. Postprandial dysmetabolism and cardiovascular disease in type 2 diabetes.  Postgrad Med J. 2005;  81 1-6
  • 15 Yamagishi S, Nakamura K, Jinnouchi Y, Takenaka K, Imaizumi T. Molecular mechanisms for vascular injury in the metabolic syndrome.  Drugs Exp Clin Res. 2005;  31 123-129
  • 16 Kajioka T, Miura K, Kitahara Y, Yamagishi S. Potential utility of combination therapy with nateglinide and telmisartan for metabolic derangements in Zucker Fatty rats.  Horm Metab Res. 2007;  39 889-893
  • 17 Folch J, Sloane-Stanley GH. A simple method for the isolation and purification of total lipides from animal tissues.  J Biol Chem. 1957;  226 497-509
  • 18 Yoshida T, Yamagishi S, Nakamura K, Matsui T, Imaizumi T, Takeuchi M, Koga H, Ueno T, Sata M. Pigment epithelium-derived factor (PEDF) ameliorates advanced glycation end product (AGE)-induced hepatic insulin resistance in vitro by suppressing Rac-1 activation.  Horm Metab Res. 2008;  40 620-625
  • 19 Barthel A, Schmoll D. Novel concepts in insulin regulation of hepatic gluconeogenesis.  Am J Physiol Endocrinol Metab. 2003;  285 E685-E692
  • 20 Hall R, Yamasaki T, Kucera T, Waltner-Law M, O’Brien R, Granner DK. Regulation of phosphoenolpyruvate carboxykinase and insulin-like growth factor-binding protein-1 gene expression by insulin.  The role of winged helix/forkhead proteins. J Biol Chem. 2000;  275 30169-30175
  • 21 Schinner S, Scherbaum WA, Bornstein SR, Barthel A. Molecular mechanisms of insulin resistance.  Diabetic Med. 2005;  22 674-782
  • 22 Miyazaki Y, Akasaka H, Ohnishi H, Saitoh S, DeFronzo RA, Shimamoto K. Differences in insulin action and secretion, plasma lipids and blood pressure levels between impaired fasting glucose and impaired glucose tolerance in Japanese subjects.  Hypertens Res. 2008;  31 1357-1363
  • 23 Li Y, Hansotia T, Yusta B, Ris F, Halban PA, Drucker DJ. Glucagon-like peptide-1 receptor signaling modulates beta cell apoptosis.  J Biol Chem. 2003;  278 471-478

Correspondence

S. YamagishiMD, PhD 

Department of Pathophysiology

and Therapeutics of Diabetic

Vascular Complications

Kurume University School of

Medicine

67 Asahi-machi

830-0011 Kurume

Japan

Phone: +81/942/31 7873

Fax: +81/942/31 7873

Email: shoichi@med.kurume-u.ac.jp

    >