Horm Metab Res 2010; 42(11): 769-774
DOI: 10.1055/s-0030-1263122
Original Basic

© Georg Thieme Verlag KG Stuttgart · New York

Dietary Folic Acid Activates AMPK and Improves Insulin Resistance and Hepatic Inflammation in Dietary Rodent Models of the Metabolic Syndrome

R. Buettner1 , I. Bettermann1 , C. Hechtl1 , E. Gäbele1 , C. Hellerbrand1 , J. Schölmerich1 , L. C. Bollheimer1
  • 1Department of Internal Medicine I, University Medical Center Regensburg, Regensburg, Germany
Further Information

Publication History

received 13.01.2010

accepted 22.07.2010

Publication Date:
27 August 2010 (online)

Abstract

The AMP activated kinase plays an important role in metabolic control, and pharmacologic enhancement of AMPK activity is used to improve insulin resistance. We hypothesized that high dose of folic acid supplementation might improve insulin sensitivity and hepatic inflammation and examined this by a dietary intervention in (a) the high fat fed rat model of the metabolic syndrome, which shows sole hepatic steatosis as well as (b) in rats fed with a high cholesterol, high cholate diet inducing nonalcoholic steatohepatitis (NASH). Male Wistar rats were fed with folic acid supplemented (40 mg/kg) high fat diet [based on lard, fat content 25% (wt/wt)] or NASH inducing diet (containing 15% fat, 1.25% cholesterol, 0.5% sodium cholate). Metabolic profiling was performed by measuring the animals’ visceral fat pads, fasting plasma glucose, insulin, and adipokines as well as in vivo insulin tolerance tests. Hepatic steatosis and inflammation were analyzed semiquantitatively by histological analysis. Folic acid supplementation reduced visceral obesity and improved plasma adiponectin levels. In vivo insulin sensitivity was improved, and in HF-FA rats folic acid increased activation of hepatic AMPK. Further, folic acid supplementation improved hepatic inflammation in animals fed with NASH-inducing diet. Dietary folic acid improved parameters of insulin resistance and hepatic inflammation in rodent models. This might be due to an increased AMK activation.

References

  • 1 Dandona P, Aljada A, Bandyopadhyay A. Inflammation: the link between insulin resistance, obesity and diabetes.  Trends Immunol. 2004;  25 4-7
  • 2 Petersen KF, Dufour S, Befroy D, Garcia R, Shulman GI. Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes.  N Engl J Med. 2004;  350 664-671
  • 3 Civitarese AE, Ukropcova B, Carling S, Hulver M, DeFronzo RA, Mandarino L, Ravussin E, Smith SR. Role of adiponectin in human skeletal muscle bioenergetics.  Cell Metab. 2006;  4 75-87
  • 4 Hardie DG, Carling D. The AMP-activated protein kinase – fuel gauge of the mammalian cell?.  Eur J Biochem. 1997;  246 259-273
  • 5 Ruderman NB, Saha AK, Kraegen EW. Malonyl CoA, AMP-activated protein kinase, and adiposity.  Endocrinology. 2003;  144 5166-5171
  • 6 Lefort N, St Amand E, Morasse S, Cote CH, Marette A. The alpha-subunit of AMPK is essential for submaximal contraction-mediated glucose transport in skeletal muscle in vitro.  Am J Physiol Endocrinol Metab. 2008;  295 E1447-E1454
  • 7 Kim YD, Park KG, Lee YS, Park YY, Kim DK, Nedumaran B, Jang WG, Cho WJ, Ha J, Lee IK, Lee CH, Choi HS. Metformin inhibits hepatic gluconeogenesis through AMP-activated protein kinase-dependent regulation of the orphan nuclear receptor SHP.  Diabetes. 2008;  57 306-314
  • 8 Corton JM, Gillespie JG, Hawley SA, Hardie DG. 5-aminoimidazole-4-carboxamide ribonucleoside. A specific method for activating AMP-activated protein kinase in intact cells?.  Eur J Biochem. 1995;  229 558-565
  • 9 Salt IP, Connell JM, Gould GW. 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR) inhibits insulin-stimulated glucose transport in 3T3-L1 adipocytes.  Diabetes. 2000;  49 1649-1656
  • 10 Iglesias MA, Ye JM, Frangioudakis G, Saha AK, Tomas E, Ruderman NB, Cooney GJ, Kraegen EW. AICAR administration causes an apparent enhancement of muscle and liver insulin action in insulin-resistant high-fat-fed rats.  Diabetes. 2002;  51 2886-2894
  • 11 Bollheimer LC, Buettner R, Kullmann A, Kullmann F. Folate and its preventive potential in colorectal carcinogenesis. How strong is the biological and epidemiological evidence?.  Crit Rev Oncol Hematol. 2005;  55 13-36
  • 12 Uygun A, Kadayifci A, Isik AT, Ozgurtas T, Deveci S, Tuzun A, Yesilova Z, Gulsen M, Dagalp K. Metformin in the treatment of patients with non-alcoholic steatohepatitis.  Aliment Pharmacol Ther. 2004;  19 537-544
  • 13 Liao F, Andalibi A, deBeer FC, Fogelman AM, Lusis AJ. Genetic control of inflammatory gene induction and NF-kappa B-like transcription factor activation in response to an atherogenic diet in mice.  J Clin Invest. 1993;  91 2572-2579
  • 14 Matsuzawa N, Takamura T, Kurita S, Misu H, Ota T, Ando H, Yokoyama M, Honda M, Zen Y, Nakanuma Y, Miyamoto K, Kaneko S. Lipid-induced oxidative stress causes steatohepatitis in mice fed an atherogenic diet.  Hepatology. 2007;  46 1392-1403
  • 15 Nishina PM, Verstuyft J, Paigen B. Synthetic low and high fat diets for the study of atherosclerosis in the mouse.  J Lipid Res. 1990;  31 859-869
  • 16 Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man.  Diabetologia. 1985;  28 412-419
  • 17 Buettner R, Newgard CB, Rhodes CJ, O’Doherty RM. Correction of diet-induced hyperglycemia, hyperinsulinemia, and skeletal muscle insulin resistance by moderate hyperleptinemia.  Am J Physiol Endocrinol Metab. 2000;  278 E563-E569
  • 18 Achon M, Alonso-Aperte E, Ubeda N, Varela-Moreiras G. Supranormal dietary folic acid supplementation: effects on methionine metabolism in weanling rats.  Br J Nutr. 2007;  98 490-496
  • 19 Achon M, Alonso-Aperts E, Varela-Moreiras G. High dietary folate supplementation: effects on diet utilization and methionine metabolism in aged rats.  J Nutr Health Aging. 2002;  6 51-54
  • 20 Achon M, Reyes L, Alonso-Aperte E, Ubeda N, Varela-Moreiras G. High dietary folate supplementation affects gestational development and dietary protein utilization in rats.  J Nutr. 1999;  129 1204-1208
  • 21 Baggott JE, Vaughn WH, Juliana MM, Eto I, Krumdieck CL, Grubbs CJ. Effects of folate deficiency and supplementation on methylnitrosourea-induced rat mammary tumors.  J Natl Cancer Inst. 1992;  84 1740-1744
  • 22 Monzillo LU, Hamdy O. Evaluation of insulin sensitivity in clinical practice and in research settings.  Nutr Rev. 2003;  61 397-412
  • 23 Buettner R, Ottinger I, Gerhardt-Salbert C, Wrede CE, Scholmerich J, Bollheimer LC. Antisense oligonucleotides against the lipid phosphatase SHIP2 improve muscle insulin sensitivity in a dietary rat model of the metabolic syndrome.  Am J Physiol Endocrinol Metab. 2007;  292 E1871-E1878
  • 24 Buettner R, Scholmerich J, Bollheimer LC. High-fat diets: modeling the metabolic disorders of human obesity in rodents.  Obesity (Silver Spring). 2007;  15 798-808
  • 25 Mangoni AA, Sherwood RA, Asonganyi B, Swift CG, Thomas S, Jackson SH. Short-term oral folic acid supplementation enhances endothelial function in patients with type 2 diabetes.  Am J Hypertens. 2005;  18 220-226
  • 26 Title LM, Ur E, Giddens K, McQueen MJ, Nassar BA. Folic acid improves endothelial dysfunction in type 2 diabetes – an effect independent of homocysteine-lowering.  Vasc Med. 2006;  11 101-109
  • 27 Kazerooni T, Asadi N, Dehbashi S, Zolghadri J. Effect of folic acid in women with and without insulin resistance who have hyperhomocysteinemic polycystic ovary syndrome.  Int J Gynaecol Obstet. 2008;  101 156-160
  • 28 Solini A, Santini E, Ferrannini E. Effect of short-term folic acid supplementation on insulin sensitivity and inflammatory markers in overweight subjects.  Int J Obes (Lond). 2006;  30 1197-1202
  • 29 Child DF, Hudson PR, Jones H, Davies GK, De P, Mukherjee S, Brain AM, Williams CP, Harvey JN. The effect of oral folic acid on glutathione, glycaemia and lipids in Type 2 diabetes.  Diabetes Nutr Metab. 2004;  17 95-102
  • 30 Daval M, Foufelle F, Ferre P. Functions of AMP-activated protein kinase in adipose tissue.  J Physiol. 2006;  574 55-62
  • 31 Cuthbertson DJ, Babraj JA, Mustard KJ, Towler MC, Green KA, Wackerhage H, Leese GP, Baar K, Thomason-Hughes M, Sutherland C, Hardie DG, Rennie MJ. 5-aminoimidazole-4-carboxamide 1-beta-d-ribofuranoside acutely stimulates skeletal muscle 2-deoxyglucose uptake in healthy men.  Diabetes. 2007;  56 2078-2084
  • 32 Kim WH, Lee JW, Suh YH, Lee HJ, Lee SH, Oh YK, Gao B, Jung MH. AICAR potentiates ROS production induced by chronic high glucose: roles of AMPK in pancreatic beta-cell apoptosis.  Cell Signal. 2007;  19 791-805
  • 33 Matte C, Mackedanz V, Stefanello FM, Scherer EB, Andreazza AC, Zanotto C, Moro AM, Garcia SC, Goncalves CA, Erdtmann B, Salvador M, Wyse AT. Chronic hyperhomocysteinemia alters antioxidant defenses and increases DNA damage in brain and blood of rats: Protective effect of folic acid.  Neurochem Int. 2009;  54 7-13
  • 34 Moens AL, Champion HC, Claeys MJ, Tavazzi B, Kaminski PM, Wolin MS, Borgonjon DJ, Van Nassauw L, Haile A, Zviman M, Bedja D, Wuyts FL, Elsaesser RS, Cos P, Gabrielson KL, Lazzarino G, Paolocci N, Timmermans JP, Vrints CJ, Kass DA. High-dose folic acid pretreatment blunts cardiac dysfunction during ischemia coupled to maintenance of high-energy phosphates and reduces postreperfusion injury.  Circulation. 2008;  117 1810-1819
  • 35 Charatcharoenwitthaya P, Levy C, Angulo P, Keach J, Jorgensen R, Lindor KD. Open-label pilot study of folic acid in patients with nonalcoholic steatohepatitis.  Liver Int. 2007;  27 220-226
  • 36 Kim YI. Folate, colorectal carcinogenesis, and DNA methylation: lessons from animal studies.  Environ Mol Mutagen. 2004;  44 10-25

Correspondence

R. BuettnerMD 

Department of Internal

Medicine I

University Medical Center

Regensburg

Franz-Josef-Strauss-Allee 11

93042 Regensburg

Germany

Phone: +49/941/9447 003

Fax: +49/941/9447 004

Email: roland.buettner@klinik.uni-regensburg.de

    >