Cent Eur Neurosurg 2011; 72(3): 144-148
DOI: 10.1055/s-0031-1271730
Review

© Georg Thieme Verlag KG Stuttgart · New York

Current Concepts on the Mechanisms of Dystonia and the Beneficial Effects of Deep Brain Stimulation

L. C. Stavrinou1 , 2 , E. J. Boviatsis1 , 2 , A. Leonardos2 , I. G. Panourias1 , 2 , D. E. Sakas1 , 2
  • 1Department of Neurosurgery, Evangelismos General Hospital, University of Athens, Greece
  • 2“Petros Kokkalis” Hellenic Centre for Neurosurgical Research, Athens, Greece
Further Information

Publication History

Publication Date:
20 May 2011 (online)

Abstract

The application of lesioning procedures in the basal ganglia and, more recently, of deep brain stimulation (DBS) has revolutionalized dystonia treatment. However, our understanding of the mechanism of action of DBS is only minimal. This is largely due to a rudimentary understanding of dystonia pathophysiology itself, which in turn reflects an insufficient understanding of the functional significance of the cortico-striato-pallido-thalamocortical loops. The initial dystonia pathophysiology concept was one of changes in oscillation rate. Soon, it was realized that not only rate but also the pattern of basal ganglia activity is crucial in the etiology of the disease. The observations of altered somatosensory responsiveness and cortical neuroplasticity, along with the vast array of clinical phenotypes, imply the need for a wholistic neuronal pathophysiology model; one in which an underlying defect of basal ganglia function results in increased cortical excitability, misprocessing of sensory feedback, aberrant cortical plasticity, and ultimately clinical dystonia. This unified dystonia pathophysiology model, although simplistic, may provide the scaffold on which all incoming research and clinical data becomes united in a meaningful and practical way. In light of this model, the dramatic response of some forms of dystonia to pallidal stimulation, the time latency for the beneficial effect and even the presence of non-responders may be explained. Additionally, it may help in developing a rationale for more efficacious DBS programming, better selection of the timing of surgery, and more successful identification of those candidates that are most likely to respond to DBS.

References

  • 1 Krauss JK. Surgical treatment of dystonia.  Eur J Neurol. 2010;  17 (Suppl. 1) 97-101
  • 2 Boviatsis EJ, Stavrinou LC, Themistocleous M. et al . Surgical and hardware complications of deep brain stimulation. A seven-year experience and review of the literature.  Acta Neurochir (Wien). 2010;  152 (12) 2053-2062
  • 3 Berardelli A, Rothwell JC, Hallett M. et al . The pathophysiology of primary dystonia.  Brain. 1998;  121 (Pt. 7) 1195-1212
  • 4 Tisch S, Rothwell JC, Limousin P. et al . The physiological effects of pallidal deep brain stimulation in dystonia.  IEEE Trans Neural Syst Rehabil Eng. 2007;  15 166-172
  • 5 Ibanez V, Sadato N, Karp B. et al . Deficient activation of the motor cortical network in patients with writer's cramp.  Neurology. 1999;  53 96-105
  • 6 Quartarone A, Siebner HR, Rothwell JC. Task-specific hand dystonia: can too much plasticity be bad for you?.  Trends Neurosci. 2006;  29 192-199
  • 7 Butterworth S, Francis S, Kelly E. et al . Abnormal cortical sensory activation in dystonia: an fMRI study.  Mov Disord. 2003;  18 673-682
  • 8 Elbert T, Candia V, Altenmuller E. et al . Alteration of digital representations in somatosensory cortex in focal hand dystonia.  Neuroreport. 1998;  9 3571-3575
  • 9 Meunier S, Garnero L, Ducorps A. et al . Human brain mapping in dystonia reveals both endophenotypic traits and adaptive reorganization.  Ann Neurol. 2001;  50 521-527
  • 10 Hammond C, Ammari R, Bioulac B. et al . Latest view on the mechanism of action of deep brain stimulation.  Mov Disord. 2008;  23 2111-2121
  • 11 Wallace BA, Ashkan K, Heise CE. et al . Survival of midbrain dopaminergic cells after lesion or deep brain stimulation of the subthalamic nucleus in MPTP-treated monkeys.  Brain. 2007;  130 2129-2145
  • 12 Haberler C, Alesch F, Mazal PR. et al . No tissue damage by chronic deep brain stimulation in Parkinson's disease.  Ann Neurol. 2000;  48 372-376
  • 13 Kupsch A, Benecke R, Muller J. et al . Pallidal deep-brain stimulation in primary generalized or segmental dystonia.  N Engl J Med. 2006;  355 1978-1990
  • 14 Mueller J, Skogseid IM, Benecke R. et al . Pallidal deep brain stimulation improves quality of life in segmental and generalized dystonia: results from a prospective, randomized sham-controlled trial.  Mov Disord. 2008;  23 131-134
  • 15 Ranck Jr JB. Which elements are excited in electrical stimulation of mammalian central nervous system: a review.  Brain Res. 1975;  98 417-440
  • 16 Nowak LG, Bullier J. Axons, but not cell bodies, are activated by electrical stimulation in cortical gray matter. II. Evidence from selective inactivation of cell bodies and axon initial segments.  Exp Brain Res. 1998;  118 489-500
  • 17 Liu X, Yianni J, Wang S. et al . Different mechanisms may generate sustained hypertonic and rhythmic bursting muscle activity in idiopathic dystonia.  Exp Neurol. 2006;  198 204-213
  • 18 Montgomery Jr EB, Gale JT. Mechanisms of action of deep brain stimulation (DBS).  Neurosci Biobehav Rev. 2008;  32 388-407
  • 19 Li S, Arbuthnott GW, Jutras MJ. et al . Resonant antidromic cortical circuit activation as a consequence of high-frequency subthalamic deep-brain stimulation.  J Neurophysiol. 2007;  98 3525-3537
  • 20 Garcia L, Audin J, D’Alessandro G. et al . Dual effect of high-frequency stimulation on subthalamic neuron activity.  J Neurosci. 2003;  23 8743-8751
  • 21 Montgomery Jr EB. Effects of GPi stimulation on human thalamic neuronal activity.  Clin Neurophysiol. 2006;  117 2691-2702
  • 22 Benazzouz A, Hallett M. Mechanism of action of deep brain stimulation.  Neurology. 2000;  55 S13-S16
  • 23 Hashimoto T, Elder CM, Okun MS. et al . Stimulation of the subthalamic nucleus changes the firing pattern of pallidal neurons.  J Neurosci. 2003;  23 1916-1923
  • 24 Maurice N, Thierry AM, Glowinski J. et al . Spontaneous and evoked activity of substantia nigra pars reticulata neurons during high-frequency stimulation of the subthalamic nucleus.  J Neurosci. 2003;  23 9929-9936
  • 25 Degos B, Deniau JM, Thierry AM. et al . Neuroleptic-induced catalepsy: electrophysiological mechanisms of functional recovery induced by high-frequency stimulation of the subthalamic nucleus.  J Neurosci. 2005;  25 7687-7696
  • 26 Galati S, Mazzone P, Fedele E. et al . Biochemical and electrophysiological changes of substantia nigra pars reticulata driven by subthalamic stimulation in patients with Parkinson's disease.  Eur J Neurosci. 2006;  23 2923-2928
  • 27 Garcia L, D’Alessandro G, Fernagut PO. et al . Impact of high-frequency stimulation parameters on the pattern of discharge of subthalamic neurons.  J Neurophysiol. 2005;  94 3662-3669
  • 28 Liu Y, Postupna N, Falkenberg J. et al . High frequency deep brain stimulation: what are the therapeutic mechanisms?.  Neurosci Biobehav Rev. 2008;  32 343-351
  • 29 Anderson ME, Postupna N, Ruffo M. Effects of high-frequency stimulation in the internal globus pallidus on the activity of thalamic neurons in the awake monkey.  J Neurophysiol. 2003;  89 1150-1160
  • 30 Leblois A, Reese R, Labarre D. et al . Deep brain stimulation changes basal ganglia output nuclei firing pattern in the dystonic hamster.  Neurobiol Dis. 2010;  38 288-298
  • 31 Grill WM, Cantrell MB, Robertson MS. Antidromic propagation of action potentials in branched axons: implications for the mechanisms of action of deep brain stimulation.  J Comput Neurosci. 2008;  24 81-93
  • 32 Hammond C, Rouzaire-Dubois B, Feger J. et al . Anatomical and electrophysiological studies on the reciprocal projections between the subthalamic nucleus and nucleus tegmenti pedunculopontinus in the rat.  Neuroscience. 1983;  9 41-52
  • 33 Chomiak T, Hu B. Axonal and somatic filtering of antidromically evoked cortical excitation by simulated deep brain stimulation in rat brain.  J Physiol. 2007;  579 403-412
  • 34 Baker KB, Montgomery Jr EB, Rezai AR. et al . Subthalamic nucleus deep brain stimulus evoked potentials: physiological and therapeutic implications.  Mov Disord. 2002;  17 969-983
  • 35 Florio T, Scarnati E, Confalone G. et al . High-frequency stimulation of the subthalamic nucleus modulates the activity of pedunculopontine neurons through direct activation of excitatory fibres as well as through indirect activation of inhibitory pallidal fibres in the rat.  Eur J Neurosci. 2007;  25 1174-1186
  • 36 Bliss TV, Lomo T. Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path.  J Physiol. 1973;  232 331-356
  • 37 Shen KZ, Zhu ZT, Munhall A. et al . Synaptic plasticity in rat subthalamic nucleus induced by high-frequency stimulation.  Synapse. 2003;  50 314-319
  • 38 Nicoll RA, Malenka RC. Contrasting properties of two forms of long-term potentiation in the hippocampus.  Nature. 1995;  377 115-118
  • 39 Alterman RL, Miravite J, Weisz D. et al . Sixty hertz pallidal deep brain stimulation for primary torsion dystonia.  Neurology. 2007;  69 681-688
  • 40 Krauss JK. Deep brain stimulation for dystonia in adults. Overview and developments.  Stereotact Funct Neurosurg. 2002;  78 168-182
  • 41 Ikoma K, Samii A, Mercuri B. et al . Abnormal cortical motor excitability in dystonia.  Neurology. 1996;  46 1371-1376
  • 42 Grabli D, Ewenczyk C, Coelho-Braga MC. et al . Interruption of deep brain stimulation of the globus pallidus in primary generalized dystonia.  Mov Disord. 2009;  24 2363-2369
  • 43 Hebb MO, Chiasson P, Lang AE. et al . Sustained relief of dystonia following cessation of deep brain stimulation.  Mov Disord. 2007;  22 1958-1962
  • 44 Iacono RP, Kuniyoshi SM, Lonser RR. et al . Simultaneous bilateral pallidoansotomy for idiopathic dystonia musculorum deformans.  Pediatr Neurol. 1996;  14 145-148
  • 45 Iacono RP, Kuniyoshi SM, Schoonenberg T. Experience with stereotactics for dystonia: case examples.  Adv Neurol. 1998;  78 221-226
  • 46 Vitek JL, Zhang J, Evatt M. et al . GPi pallidotomy for dystonia: clinical outcome and neuronal activity.  Adv Neurol. 1998;  78 211-219
  • 47 Capelle HH, Schrader C, Blahak C. et al . Deep brain stimulation for camptocormia in dystonia and Parkinson's disease.  J Neurol. 2010;  258 (1) 96-103
  • 48 Andrews C, Aviles-Olmos I, Hariz M. et al . Which patients with dystonia benefit from deep brain stimulation? A metaregression of individual patient outcomes.  J Neurol Neurosurg Psychiatry. 2010;  81 (12) 1383-1389
  • 49 Alterman RL, Tagliati M. Deep brain stimulation for torsion dystonia in children.  Childs Nerv Syst. 2007;  23 1033-1040
  • 50 Coubes P, Cif L, El Fertit H. et al . Electrical stimulation of the globus pallidus internus in patients with primary generalized dystonia: long-term results.  J Neurosurg. 2004;  101 189-194
  • 51 Isaias IU, Alterman RL, Tagliati M. Outcome predictors of pallidal stimulation in patients with primary dystonia: the role of disease duration.  Brain. 2008;  131 1895-1902
  • 52 Parr JR, Green AL, Joint C. et al . Deep brain stimulation in childhood: an effective treatment for early onset idiopathic generalised dystonia.  Arch Dis Child. 2007;  92 708-711

Correspondence

Dr. L. C. Stavrinou

Department of Neurosurgery

Evangelismos General Hospital

University of Athens

Ipsilantou str. 45–47

10676 Athens

Greece

Phone: + 30/210/7201 742

Fax: + 30/210/7201 704

Email: mplam@hotmail.com

    >