Horm Metab Res 2013; 45(02): 124-129
DOI: 10.1055/s-0032-1323810
Original Basic
© Georg Thieme Verlag KG Stuttgart · New York

Characterization of NCI-H295R Cells as an In Vitro Model of Hyperaldosteronism

U. D. Lichtenauer
1   Endocrine Research Unit, Medizinische Klinik und Poliklinik IV, Klinikum der LMU, Munich, Germany
,
I. Shapiro
1   Endocrine Research Unit, Medizinische Klinik und Poliklinik IV, Klinikum der LMU, Munich, Germany
,
A. Osswald
1   Endocrine Research Unit, Medizinische Klinik und Poliklinik IV, Klinikum der LMU, Munich, Germany
,
S. Meurer
2   Endocrine Laboratory, Medizinische Klinik und Poliklinik IV, Klinikum der LMU, Munich, Germany
,
A. Kulle
3   Pediatric Clinic, University Hospital Kiel, Kiel, Germany
,
M. Reincke
1   Endocrine Research Unit, Medizinische Klinik und Poliklinik IV, Klinikum der LMU, Munich, Germany
,
F. Riepe
3   Pediatric Clinic, University Hospital Kiel, Kiel, Germany
,
F. Beuschlein
1   Endocrine Research Unit, Medizinische Klinik und Poliklinik IV, Klinikum der LMU, Munich, Germany
› Author Affiliations
Further Information

Publication History

received 10 June 2012

accepted 20 August 2012

Publication Date:
30 October 2012 (online)

Abstract

In depth analysis of key molecular mechanisms involved in functional autonomy of aldosterone secretion is hampered by the lack of tumor cell lines that reflect functional characteristics of aldosterone producing adenomas. Herein, we describe the characteristics of the adrenocortical carcinoma cell line NCI-H295R and its suitability as a model of hyperaldosteronism in relation to different culture conditions. Steroid profiling revealed that NCI-H295R cells predominantly secrete cortisol, while aldosterone and other steroids are released at much lower concentrations. However, aldosterone output specifically increased in response to different stimuli such as ACTH and angiotensin II, and in particular to potassium in a dose dependent manner. NCI-H295R cells readily formed spheroids under specific culture conditions, a method widely used for the enrichment of progenitor cells. Unexpectedly, spheroid cells excelled with higher aldosterone concentration and higher expression levels of the steroidogenic enzymes StAR, 3βHSD, CYP17, SF-1, and the MC2-receptor. Further investigations revealed that this phenomenon is mainly attributed to epithelial growth factor (EGF) and particularly fibroblast growth factor (FGF), which are both essential ingredients in the spheroid culture medium. Aldosterone release under the combinatory influence of EGF and FGF was not higher than the effect of FGF alone. Spheroid growth per se, therefore, does not ensure an enrichment of less differentiated cell types in this cell line.

 
  • References

  • 1 Schirpenbach C, Reincke M. Primary aldosteronism: current knowledge and controversies in Conn’s syndrome. Nat Clin Pract Endocrinol Metab 2007; 3: 220-227
  • 2 Reincke M, Beuschlein F, Bidlingmaier M, Funder JW, Bornstein SR. Progress in primary aldosteronism. Horm Metab Res 2010; 42: 371-373
  • 3 Rainey WE, Saner K, Schimmer BP. Adrenocortical cell lines. Mol Cell Endocrinol 2004; 228: 23-38
  • 4 Bird IM, Hanley NA, Word RA, Mathis JM, McCarthy JL, Mason JI, Rainey WE. Human NCI-H295 adrenocortical carcinoma cells: a model for angiotensin-II-responsive aldosterone secretion. Endocrinology 1993; 133: 1555-1561
  • 5 Gazdar AF, Oie HK, Shackleton CH, Chen TR, Triche TJ, Myers CE, Chrousos GP, Brennan MF, Stein CA, La Rocca RV. Establishment and characterization of a human adrenocortical carcinoma cell line that expresses multiple pathways of steroid biosynthesis. Cancer Res 1990; 50: 5488-5496
  • 6 Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, Dirks PB. Identification of a cancer stem cell in human brain tumors. Cancer Res 2003; 63: 5821-5828
  • 7 Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 2003; 100: 3983-3988
  • 8 Hirschmann-Jax C, Foster AE, Wulf GG, Nuchtern JG, Jax TW, Gobel U, Goodell MA, Brenner MK. A distinct “side population” of cells with high drug efflux capacity in human tumor cells. Proc Natl Acad Sci USA 2004; 101: 14228-14233
  • 9 Lichtenauer UD, Shapiro I, Geiger K, Quinkler M, Fassnacht M, Nitschke R, Ruckauer KD, Beuschlein F. Side population does not define stem cell-like cancer cells in the adrenocortical carcinoma cell line NCI h295R. Endocrinology 2008; 149: 1314-1322
  • 10 Carpenter MK, Cui X, Hu ZY, Jackson J, Sherman S, Seiger A, Wahlberg LU. In vitro expansion of a multipotent population of human neural progenitor cells. Exp Neurol 1999; 158: 265-278
  • 11 Chung KF, Sicard F, Vukicevic V, Hermann A, Storch A, Huttner WB, Bornstein SR, Ehrhart-Bornstein M. Isolation of neural crest derived chromaffin progenitors from adult adrenal medulla. Stem Cells 2009; 27: 2602-2613
  • 12 Dontu G, Al-Hajj M, Abdallah WM, Clarke MF, Wicha MS. Stem cells in normal breast development and breast cancer. Cell Prolif 2003; 36 (Suppl. 01) 59-72
  • 13 Uchida N, Buck DW, He D, Reitsma MJ, Masek M, Phan TV, Tsukamoto AS, Gage FH, Weissman IL. Direct isolation of human central nervous system stem cells. Proc Natl Acad Sci USA 2000; 97: 14720-14725
  • 14 Zwermann O, Schulte DM, Reincke M, Beuschlein F. ACTH 1-24 inhibits proliferation of adrenocortical tumors in vivo. Eur J Endocrinol 2005; 153: 435-444
  • 15 Kulle AE, Riepe FG, Melchior D, Hiort O, Holterhus PM. A novel ultrapressure liquid chromatography tandem mass spectrometry method for the simultaneous determination of androstenedione, testosterone, and dihydrotestosterone in pediatric blood samples: age- and sex-specific reference data. J Clin Endocrinol Metab 2010; 95: 2399-2409
  • 16 Manolopoulou J, Mulatero P, Maser-Gluth C, Rossignol P, Spyroglou A, Vakrilova Y, Petersenn S, Zwermann O, Plouin PF, Reincke M, Bidlingmaier M. Saliva as a medium for aldosterone measurement in repeated sampling studies. Steroids 2009; 74: 853-858
  • 17 Wang T, Rowland JG, Parmar J, Nesterova M, Seki T, Rainey WE. Comparison of aldosterone production among human adrenocortical cell lines. Horm Metab Res 2012; 44: 245-250
  • 18 Matthews EK, Saffran M. Ionic dependence of adrenal steroidogenesis and ACTH-induced changes in the membrane potential of adrenocortical cells. J Physiol 1973; 234: 43-64
  • 19 Saruta T, Kondo K, Saito I, Misumi J, Nakamura R, Kidokoro S, Matsuki S. Effects of low salt plus upright posture, angiotensin II, ACTH, and potassium upon plasma renin activity, aldosterone, and cortisol (author’s transl). Nihon Naibunpi Gakkai Zasshi 1975; 51: 740-744
  • 20 Boyd JE, Palmore WP, Mulrow PJ. Role of potassium in the control of aldosterone secretion in the rat. Endocrinology 1971; 88: 556-565