Klin Monbl Augenheilkd 2014; 231(4): 335-339
DOI: 10.1055/s-0034-1368222
Klinische Studie
Georg Thieme Verlag KG Stuttgart · New York

Analysis of Risk Factors for Long-Term Glaucomatous Damage Development

Analyse der Risikofaktoren für die langfristige Glaukomschadenprogression
S. Gross
Ophthalmology Department, University Hospital Basel, Switzerland
,
K. Gugleta
Ophthalmology Department, University Hospital Basel, Switzerland
,
C. Turksever
Ophthalmology Department, University Hospital Basel, Switzerland
,
A. Ledolter
Ophthalmology Department, University Hospital Basel, Switzerland
,
A. Kochkorov
Ophthalmology Department, University Hospital Basel, Switzerland
,
J. Flammer
Ophthalmology Department, University Hospital Basel, Switzerland
,
S. Orgul
Ophthalmology Department, University Hospital Basel, Switzerland
› Author Affiliations
Further Information

Publication History

received 09 September 2013

accepted 01 January 2014

Publication Date:
25 April 2014 (online)

Abstract

Purpose: The aim of this study was to analyze predictors of long-term glaucoma progression.

Patients and Methods: We followed 17 primary open angle glaucoma patients (POAG) and 25 ocular hypertensives (OHT) over three years, with regular follow-up examinations of both eyes every 6 months. Glaucoma damage was quantified by optical coherence tomography (retinal nerve fiber layer – OCT RNFL) and by perimetry. Corneal and hand temperature (infrared thermometer), corneal hysteresis, pachymetry and ocular pulse amplitude (OPA) readings were taken at baseline, and applanatory intraocular pressure and retinal vessel analysis recordings were made at baseline and follow-up visits. Forward-stepwise multiple regression analysis was performed.

Results: With OCT-RNFL progression as the dependent variable, the model selected initial diagnosis (OHT less probable of progressing), baseline RNFL thickness, retinal arterial and venous diameter and arterial flicker response as significant damage predictors. For visual field damage progression, these were: corneal temperature, OPA, initial diagnosis and venous flicker response (all p < 0.05).

Conclusion: Initial damage and vascular factors are strong predictors of future glaucoma progression.

Zusammenfassung

Hintergrund: Analyse der Prädiktoren des Glaukomschadens. Methoden und Patienten: Primäroffenwinkelglaukom-Patienten (17) und okulären Hypertoniker (25) wurden über 3 Jahre alle 6 Monate untersucht. Glaukomschaden wurde mittels Optischer Kohärenztomografie und Perimetrie erfasst. Dazu wurden auch die Hornhaut- und Handtemperatur (Infrarotthermometrie), korneale Hysterese, Pachymetrie und okuläre Pulsamplitude (OPA) bei der ersten Untersuchung dokumentiert, und die Augendruckmessungen und die retinale Gefässaufnahmen am Anfang und im Verlauf durchgeführt. Als statistische Methode wurde die schrittweise Regressionsanalyze angewendet. Ergebnisse: Die Ausgangsdicke der Nervenfasernschicht, initiale Diagnose, arterieller und venöser Gefässdurchmesser und die arterielle Antwort aufs geflickerte Licht waren die ausgewählten signifikanten Prädiktoren des glaukomatösen Nervenfasernverlustes. Für die Gesichtsfeldschadenprogression waren dies die Hornhauttemperatur, OPA, initiale Diagnose und venöse Antwort aufs geflickerte Licht (alle p < 0.05). Schlussfolgerung: Trotz Initialschaden und die vaskuläre Faktoren sind wichtige Glaukomshadenprädiktoren.

 
  • References

  • 1 Akpek EK, Smith RA. Overview of age-related ocular conditions. Am J Manag Care 2013; 19 (5 Suppl.) S67-S75
  • 2 Flammer J, Orgul S, Costa VP et al. The impact of ocular blood flow in glaucoma. Prog Retin Eye Res 2002; 21: 359-393
  • 3 Harris A, Kagemann L, Ehrlich R et al. Measuring and interpreting ocular blood flow and metabolism in glaucoma. Can J Ophthalmol 2008; 43: 328-336
  • 4 European Glaucoma Society EGS. Perimetry. Terminology and Guidelines for Glaucoma. Savona: Dogma; 2008: 82-87
  • 5 Patel SR, Bellary S, Qin L et al. Abnormal retinal vascular function and lipid levels in a sample of healthy UK South Asians. Br J Ophthalmol 2011; 95: 1573-1576
  • 6 Wimpissinger B, Resch H, Berisha F et al. Effects of isometric exercise on subfoveal choroidal blood flow in smokers and nonsmokers. Invest Ophthalmol Vis Sci 2003; 44: 4859-4863
  • 7 Wimpissinger B, Resch H, Berisha F et al. Response of choroidal blood flow to carbogen breathing in smokers and non-smokers. Br J Ophthalmol 2004; 88: 776-781
  • 8 Wimpissinger B, Resch H, Berisha F et al. Response of retinal blood flow to systemic hyperoxia in smokers and nonsmokers. Graefes Arch Clin Exp Ophthalmol 2005; 243: 646-652
  • 9 Kocak I, Orgul S, Flammer J. Variability in the measurement of corneal temperature using a noncontact infrared thermometer. Ophthalmologica 1999; 213: 345-349
  • 10 Gugleta K, Orgul S, Flammer J. Is corneal temperature correlated with blood-flow velocity in the ophthalmic artery?. Curr Eye Res 1999; 19: 496-501
  • 11 Galassi F, Giambene B, Corvi A et al. Evaluation of ocular surface temperature and retrobulbar haemodynamics by infrared thermography and color doppler imaging in glaucoma patients. Br J Ophthalmol 2007; 91: 878-881
  • 12 Gardner-Medwin JM, Macdonald IA, Taylor JY et al. Seasonal differences in finger skin temperature and microvascular blood flow in healthy men and women are exaggerated in women with primary Raynaudʼs phenomenon. Br J Clin Pharmacol 2001; 52: 17-23
  • 13 Gompper B, Bromundt V, Orgul S et al. Phase relationship between skin temperature and sleep-wake rhythms in women with vascular dysregulation and controls under real-life conditions. Chronobiol Int 2010; 27: 1778-1796
  • 14 Kaufmann C, Bachmann LM, Thiel MA. Comparison of dynamic contour tonometry with goldmann applanation tonometry. Invest Ophthalmol Vis Sci 2004; 45: 3118-3121
  • 15 Luce DA. Determining in vivo biomechanical properties of the cornea with an ocular response analyzer. J Cataract Refract Surg 2005; 31: 156-162
  • 16 Seifertl BU, Vilser W. Retinal Vessel Analyzer (RVA)–design and function. Biomed Tech (Berl) 2002; 47 (Suppl. 12) 678-681
  • 17 Vilser W, Nagel E, Lanzl I. Retinal Vessel Analysis–new possibilities. Biomed Tech (Berl) 2002; 47 (Suppl. 12) 682-685
  • 18 Gugleta K, Zawinka C, Rickenbacher I et al. Analysis of retinal vasodilation after flicker light stimulation in relation to vasospastic propensity. Invest Ophthalmol Vis Sci 2006; 47: 4034-4041
  • 19 Garhofer G, Bek T, Boehm AG et al. Use of the retinal vessel analyzer in ocular blood flow research. Acta Ophthalmol 2010; 88: 717-722
  • 20 Schlottmann PG, De Cilla S, Greenfield DS et al. Relationship between visual field sensitivity and retinal nerve fiber layer thickness as measured by scanning laser polarimetry. Invest Ophthalmol Vis Sci 2004; 45: 1823-1829
  • 21 Strouthidis NG, Vinciotti V, Tucker AJ et al. Structure and function in glaucoma: The relationship between a functional visual field map and an anatomic retinal map. Invest Ophthalmol Vis Sci 2006; 47: 5356-5362
  • 22 Katsanos A, Kothy P, Konstas AG et al. Correlation between polarimetric retinal nerve fiber layer thickness and retinal sensitivity determined with frequency-doubling technology. Ophthalmic Surg Lasers Imaging 2005; 36: 394-400
  • 23 Gugleta K, Polunina A, Kochkorov A et al. Association between risk factors and glaucomatous damage in untreated primary open-angle glaucoma. J Glaucoma 2013; 22: 501-505
  • 24 Gordon MO, Beiser JA, Brandt JD et al. The Ocular Hypertension Treatment Study: baseline factors that predict the onset of primary open-angle glaucoma. Arch Ophthalmol 2002; 120: 714-720
  • 25 Ghanem M, Gugleta K, Oettli A et al. [Analysis of retinal vein motion in glaucoma patients]. Klin Monatsbl Augenheilkd 2013; 230: 358-362
  • 26 Morgan WH, Hazelton ML, Azar SL et al. Retinal venous pulsation in glaucoma and glaucoma suspects. Ophthalmology 2004; 111: 1489-1494
  • 27 Gugleta K, Kochkorov A, Waldmann N et al. Dynamics of retinal vessel response to flicker light in glaucoma patients and ocular hypertensives. Graefes Arch Clin Exp Ophthalmol 2012; 250: 589-594
  • 28 Gugleta K, Waldmann N, Polunina A et al. Retinal neurovascular coupling in patients with glaucoma and ocular hypertension and its association with the level of glaucomatous damage. Graefes Arch Clin Exp Ophthalmol 2013; 251: 1577-1585
  • 29 Lee M, Cho EH, Lew HM et al. Relationship between ocular pulse amplitude and glaucomatous central visual field defect in normal-tension glaucoma. J Glaucoma 2012; 21: 596-600
  • 30 Dastiridou AI, Tsironi EE, Tsilimbaris M et al. Ocular rigidity, outflow facility, ocular pulse amplitude and pulsatile ocular blood flow in open angle glaucoma; a manometric study. Invest Ophthalmol Vis Sci 2013; 54: 4571-4577
  • 31 Kynigopoulos M, Tzamalis A, Ntampos K et al. Decreased ocular pulse amplitude associated with functional and structural damage in open-angle glaucoma. Eur J Ophthalmol 2012; 22: 111-116
  • 32 Fujishima H, Toda I, Yamada M et al. Corneal temperature in patients with dry eye evaluated by infrared radiation thermometry. Br J Ophthalmol 1996; 80: 29-32
  • 33 Morgan PB, Tullo AB, Efron N. Infrared thermography of the tear film in dry eye. Eye 1995; 9: 615-618
  • 34 Leske MC, Heijl A, Hyman L et al. Predictors of long-term progression in the early manifest glaucoma trial. Ophthalmology 2007; 114: 1965-1972
  • 35 The AGIS Investigators. The Advanced Glaucoma Intervention Study (AGIS): 7. The relationship between control of intraocular pressure and visual field deterioration. Am J Ophthalmol 2000; 130: 429-440