Der Klinikarzt 2014; 43(1): 10-17
DOI: 10.1055/s-0034-1370754
Schwerpunkt
© Georg Thieme Verlag Stuttgart · New York

Therapeutische Apherese – Eine Übersicht aktueller Indikationsstellungen

Therapeutic apheresis – An overview of current indications
Erwin Strasser
1   Transfusionsmedizinische und Hämostaseologische Abteilung, Universitätsklinikum Erlangen
› Author Affiliations
Further Information

Publication History

Publication Date:
05 February 2014 (online)

Die therapeutische Apherese (TA) wurde erstmals 1914 für die Trennung des Plasmas von Erythrozyten (Plasmapherese) beschrieben. Zu den ersten Indikationen der TA bei Patienten vor ungefähr 50 Jahren gehörten die Behandlung der Paraproteinämie (M. Waldenström) und die Depletion von Leukämiezellen bei chronisch myeloischer Leukämie (CML) oder chronisch lymphatischer Leukämie (CLL). Die therapeutische Zelldepletion wird auch bei schwerer Polyzythämie oder Thrombozythämie bei myeloproliferativen Erkankungen, die gegenüber Medikamenten therapierefraktär und für den Patienten symptomatisch sind, eingesetzt. Ein Erythrozytenaustausch wird hingegen bei Erkrankungen der Erythrozyten, z. B. bei schweren Verlaufsformen der Malaria oder der Sichelzellanämien durchgeführt. Entsprechend den aktuell gültigen international anerkannten Guidelines der amerikanischen Gesellschaft für Apherese (6. Auflage, 2013), werden als Kategorie-I-Indikationen diejenigen Erkrankungen beschrieben, für die TA als Erstlinienbehandlung anerkannt ist und dabei entweder als alleinige Therapie oder in Verbindung mit anderen Behandlungsmodalitäten durchgeführt wird. Technisch unterscheidet man verschiedene Verfahren der TA. Selektive Verfahren können spezielle Proteine (z. B. Immunglobuline) durch Säulentechnik gezielt unter Verwendung spezieller immunologischer oder physikochemischer Verfahren entfernen. Bei progredienter kardiovaskulärer Erkrankung durch eine familiäre Hyperlipoproteinämie sind selektive TA, wie die Lipoproteinapherese, heute das einzige effiziente Therapieverfahren. Während nicht-selektive Verfahren (z. B. Plasmaaustausch, Zelldepletion) auch gesunde Blutkomponenten während der TA entfernen, die anschließend ersetzt werden müssen.

Therapeutic apheresis (TA) was first described in 1914 for the separation of plasma from erythrocytes (plasmapheresis). Among the first indications for TA in patients about 50 years ago were the treatment of paraproteinemia (Waldenström's disease) and thee depletion of leukemia cells in cases of chronic myeloid leukemia (CML) or chronic lymphatic leukemia (CLL). Therapeutic cell depletion is also employed for severe polycythemia or thrombocythemia in myeloproliferative diseases which are refractory to drug treatment and symptomatic for the patients. An erythrocyte exchange, on the other hand, is performed for diseases of erythrocytes, e. g., for severe forms of malaria or sickle cell anemia. According to the currently valid and internationally recognized guidelines of the American Society for Apheresis (6th edition, 2013)), category I indications are considered to be those diseases for which TA is established as a first-line treatment that is performed as monotherapy or in combination with other treatment modalities. Technically, we distinguish between various procedures for TA. Selective procedures can specifically remove special proteins (e. g., immunoglobulins) by column technologies using special immunological of physicochemical processes. In cases of progressive cardiovascular diseases, a selective TA such as lipoprotein apheresis, is today the only available efficient therapeutic procedure. However, non-selective procedures (e. g., plasma exchange, cell depletion also remove healthy blood components during the procedure, which must subsequently be replaced. Prior to TA in every case, the patient must be informed about its action, side reactions and possible therapeutic options.

 
  • Literatur

  • 1 Lane TA. Continuous-flow leukapheresis for rapid cytoreduction in leukemia. Transfusion 1980; 20: 455-457
  • 2 Spengel FA, Zoller WG. Erythrocytapheresis: A new effective tool for treatment of central venous thrombosis of the eye. Plasma Ther Transfus Technol 1986; 7: 139-142
  • 3 Files JC, Case CJ, Morrison FS. Automated erythrocyte exchange in fulminant falciparum malaria. Ann Intern Med 1984; 100: 396-396
  • 4 Kernoff LM, Botha MC, Jacobs P. Exchange transfusion in sickle cell disease using a continuous-flow blood cell separator. Transfusion 1977; 17: 269-271
  • 5 Schwartz J, Winters JL, Padmanabhan A et al. Guidelines on the use of therapeutic apheresis in clinical practice-evidence-based approach from the Writing Committee of the American Society for Apheresis: The sixth Special Issue. J Clin Apher 2013; 28: 145-284
  • 6 Lockwood CM, Boulton-Jones JM, Lowenthal RM. Recovery from Goodpasture's syndrome after immunosuppressive treatment and plasmapheresis. Br Med J 1975; 2: 252-254
  • 7 Balogun RA, Ogunniyi A, Sanford K et al. Therapeutic apheresis in special populations. J Clin Apher 2010; 25: 265-274
  • 8 Vernia P, D'Ovidio V, Meo D. Leukocytapheresis in the treatment of inflammatory bowel disease: current position and perspectives. Transf Apher Sci 2010; 43: 227-229
  • 9 Muratov V, Paulsson JM, Elvin K et al. Kinetics of the soluble IL-1 receptor type I during treatment with an LCAP filter in patients with inflammatory bowel disease. J Clin Apher 2012; 27: 61-63
  • 10 Hanai H, Takeda Y, Eberhardson M et al. The mode of action of the Adacolumn therapeutic leucocytapheresis in patients with inflammatory bowel disease: a concise review. Clin Exp Immunol 2011; 163: 50-58
  • 11 Mansouri Taleghani B. Therapeutische Hämapherese. In: Kiefel V., Hrsg. Transfusionsmedizin und Immunhämatologie. Berlin Heidelberg: Springer; 2010: 457-474
  • 12 Gurland HU, Lysaght MJ, Samtleben W, Schmidt B. A comparison of centrifugal and membrane-based apheresis formats. Int J Artif Organs 1984; 7: 35-38
  • 13 Braun N. Immunadsorption Devices and Technique. In: Braun N, Hrsg. Fundamentals and Applications of Immunadsorption. Bremen: UniMed; 2009: 14-16
  • 14 Rönspeck W, Brinckmann R, Egner R et al. Peptide based adsorbers for therapeutic immunoadsorption. Ther Apher Dial 2003; 7: 91-97
  • 15 Wild B, Pietruck F, Kribben A, Witzke O. Isoagglutinin titre adsorption: Breaking the barriere in major ABO-incompatible organ transplantation. Transf Apher Science 2009; 41: 45-48
  • 16 Hester JP, Ayyar R. Anticoagulation and electrolytes. J Clin Apher 1984; 2: 41-51
  • 17 Szymanski IO. Ionized calcium during plateletpheresis. Transfusion 1978; 18: 701-708
  • 18 Bolan CD, Greer SE, Cecco SA. Comprehensive analysis of citrate effects during plateletpheresis in normal donors. Transfusion 2001; 41: 1165-1171
  • 19 Bolan CD, Cecco SA, Wesley RA et al. Controlled study of citrate effects and response to IV calcium administration during allogeneic peripheral blood progenitor cell donation. Transfusion 2002; 42: 935-946
  • 20 Haddad S, Leitman SF, Wesley RA et al. Placebo-controlled study of intravenous magnesium supplementation during large-volume leukapheresis in healthy allogeneic donors. Transfusion 2005; 45: 934-944
  • 21 Hester JP, McCullough J, Mishler JM, Szymanski IO. Dosage regiments for citrate anticoagulants. J Clin Apher 1983; 1: 149-157
  • 22 Weinstein R. Hypocalcemic toxicity and atypical reactions in therapeutic plasma exchange. J Clin Apher 2001; 16: 210-211
  • 23 Bell AM, Nolen JD, Knudson CM, Raife TJ. Severe citrate toxicity complicating volunteer apheresis platelet donation. J Clin Apher 2007; 22: 15-16
  • 24 Pearl RG, Rosenthal MH. Metabolic alkalosis due to plasmapheresis. Am J Med 1985; 79: 391-393
  • 25 McLeod BC, Sniecinski I, Ciavarella D et al. Frequency of immediate adverse events associated with apheresis donations. Transfusion 1998; 38: 938-943
  • 26 Rossi PL, Cecchini L, Menichella G et al. Comparison of the side effects of therapeutic cytapheresis and those of other types of hemapheresis. Haematologica 1991; 76 (Suppl. 01) 75-80
  • 27 Huestis DW. Risks and safety practises in hemapheresis procedures. Arch Pathol Lab Med 1989; 113: 273-278
  • 28 Dau PC. Immunologic rebound. J Clin Apher 1995; 10: 210-217
  • 29 Guillian-Barré Syndrome Study Group. Plasmapheresis and acute Guillian-Barré syndrome. Neurology 1985; 35: 1096-1104
  • 30 Vriesendorp FJ, Mayer RF, Koski CL. Kinetics of anti-peripheral nerve myelin antibody in patients with Guillian-Barré syndrome treated and not treated with plasmapheresis. Arch Neurol 1991; 48: 858-861
  • 31 Moake JL. Thrombotic thrombocytopenic purpura. Thromb Haemost 1995; 74: 240-245
  • 32 Beck JR, Quinn BM, Meier FA, Rawnsley HM. Hyperviscosity syndrome in paraproteinemia. Managed by plasma exchange; monitored by serum tests. Transfusion 1982; 22: 51-53
  • 33 Freireich E, Thomas L, Rei E et al. A distinctive type of intracerebral hemorrhage associated with „blast crisis“ in patients with leukemia. Cancer 1960; 13: 146-154
  • 34 Porcu P, Cripe LP, Ng EW et al. Hyperleukocytic leukemias and leukostasis: A review of pathophysiology, clinical presentation, and management. Leuk Lymphoma 2000; 39: 1-18
  • 35 Bug G, Anargyrou K, Tonn T et al. Impact of leukapheresis on early death rate in adult acute myeloic leukemia presenting with hyperleukocytosis. Transfusion 2007; 47: 1843-1850
  • 36 Gesetz zur Verbesserung der Rechte von Patientinnen und Patienten vom 20. Februar 2013 (BGBl. I S. 277).
  • 37 Klingel R. Effektivität der Lipoprotein-Apherese in Studie belegt. Deutsches Ärzteblatt 2013; 110