Hamostaseologie 2010; 30(03): 144-149
DOI: 10.1055/s-0037-1619043
Review
Schattauer GmbH

Alternatively spliced tissue factor

A crippled protein in coagulation or a key player in non-haemostatic processes?Tissue-Faktor nach alternativem Splicing – Ein verkrüppeltes Protein der Gerinnung oder ein Schlüsselprotein nicht hämostatischer Prozesse?Tissue-Faktor nach alternativem Splicing – Ein verkrüppeltes Protein der Gerinnung oder ein Schlüsselprotein nicht hämostatischer Prozesse?
Y. W. van den Berg
1   Einthoven Laboratory for Experimental Vascular Medicine, department of thrombosis and haemostasis, Leiden University Medical Centre, Leiden, the Netherlands
,
H. H. Versteeg
1   Einthoven Laboratory for Experimental Vascular Medicine, department of thrombosis and haemostasis, Leiden University Medical Centre, Leiden, the Netherlands
› Author Affiliations
Further Information

Publication History

Publication Date:
26 December 2017 (online)

Summary

Full-length tissue factor (flTF) initiates coagulation, but also exerts non-hemostatic functions such as inflammation and angiogenesis through protease activated receptors (PARs). In 2003 a soluble variant of flTF was described which results from alternative splicing. Since its discovery the role of alternatively spliced tissue factor (asTF) in coagulation has been debated. asTF may have pro-coagulant properties but due to structural differences when compared to flTF, asTF coagulant function may be relatively low. Nevertheless, similar to flTF, asTF appears to have non-hemostatic properties; asTF expression in tumors correlates with increased tumor size, vessel number and poor survival in some cancer types, and drives tumor growth in animal models. Interestingly, unlike flTF, asTF does not promote angiogenesis through activating PARs but rather via integrin ligation. flTF is a critical determinant in cardiovascular disease but little is known about asTF in cardiovascular disease. asTF is produced by monocytes and macrophages, thus macrophage-derived asTF may contribute to atherosclerotic disease. In conclusion, unraveling asTF’s non-hemostatic properties may generate new insights in the pathophysiology and diagnostics of cancer and cardiovascular disease.

Zusammenfassung

Der flTF (full length tissue factor) initiiert die Gerinnung, verfügt aber durch die Protease-aktivierten Rezeptoren (PARs) auch über andere Funktionen, wie Inflammation und Angiogenese. Im Jahr 2003 wurde eine lösliche Variante des flTF beschrieben, die durch ein alternatives Splicing entsteht. Seit seiner Entdeckung wird über die Rolle des alternativ gespleißten Tissue-Faktors (asTF) bei der Gerinnung diskutiert. Der asTF könnte gerinnungsfördernde Eigenschaften besitzen, aufgrund struktureller Unterschiede im Vergleich zu flTF ist die Gerinnungsfunktion bei asTF jedoch möglicherweise relativ gering. Allerdings scheint asTF, ähnlich wie flTF, nicht hämostatischen Eigenschaften zu besitzen; die Expression von asTF in Tumoren korreliert positiv mit der Tumorgröße, der Anzahl der Gefäße und einem schlechteren Überleben bei bestimmten Tumorarten und verstärkt in Tiermodellen das Tumorwachstum. Interessanterweise fördert asTF im Gegensatz zu flTF die Angiogenese nicht über die Aktivierung der PARs, sondern vielmehr über die Ligation von Integrinen. Von zentraler Bedeutung ist flTF bei kardiovaskulären Erkrankungen, man weiß jedoch wenig über die Rolle von asTF bei diesen Erkrankungen. asTF wird in Monozyten und Makrophagen gebildet, daher könnte asTF mit makrophagealem Ursprung zu arteriosklerotischen Erkrankungen beitragen. Abschließend kann man sagen, dass die Erforschung der nicht-hämostatischen Eigenschaften des asTF neue Einblicke in die Pathophysiologie und Diagnostik von Krebs und kardiovaskulären Erkrankungen schaffen könnte.

 
  • References

  • 1 Versteeg HH, Ruf W. Emerging insights in tissue factor-dependent signaling events. Semin Thromb Hemost 2006; 32: 24-32.
  • 2 Giesen PL, Rauch U, Bohrmann B. et al. Blood-borne tissue factor: another view of thrombosis. Proc Natl Acad Sci USA 1999; 96: 2311-2315.
  • 3 Ott I. Tissue factor in acute coronary syndromes. Semin Vasc Med 2003; 03: 185-192.
  • 4 Key NS, Slungaard A, Dandelet L. et al. Whole blood tissue factor procoagulant activity is elevated in patients with sickle cell disease. Blood 1998; 91: 4216-4223.
  • 5 Aras O, Shet A, Bach RR. et al. Induction of microparticle- and cell-associated intravascular tissue factor in human endotoxemia. Blood 2004; 103: 4545-4553.
  • 6 Tesselaar ME, Romijn FP, Van der Linden IK. et al. Microparticle-associated tissue factor activity: a link between cancer and thrombosis?. J Thromb Haemost 2007; 05: 520-527.
  • 7 Bogdanov VY, Balasubramanian V, Hathcock J. et al. Alternatively spliced human tissue factor: a circulating, soluble, thrombogenic protein. Nat Med 2003; 09: 458-462.
  • 8 Bogdanov VY, Kirk RI, Miller C. et al. Identification and characterization of murine alternatively spliced tissue factor. J Thromb Haemost 2006; 04: 158-167.
  • 9 Tardos JG, Eisenreich A, Deikus G. et al. SR proteins ASF/SF2 and SRp55 participate in tissue factor biosynthesis in human monocytic cells. J Thromb Haemost 2008; 06: 877-884.
  • 10 Chandradas S, Deikus G, Tardos JG. et al. Antagonistic roles of four SR proteins in the biosynthesis of alternatively spliced tissue factor transcripts in monocytic cells. J Leukoc Biol 2010; 87: 147-152.
  • 11 Szotowski B, Antoniak S, Poller W. et al. Procoagulant soluble tissue factor is released from endothelial cells in response to inflammatory cytokines. Circ Res 2005; 96: 1233-1239.
  • 12 Eisenreich A, Bogdanov VY, Zakrzewicz A. et al. Cdc2-like kinases and DNA topoisomerase I regulate alternative splicing of tissue f actor in hum an en do the-lial cells. Circ Res 2009; 104: 589-599.
  • 13 Eisenreich A, Malz R, Pepke W. et al. Role of the phosphatidylinositol 3-kinase/protein kinase B pathway in regulating alternative splicing of tissue factor mRNA in human endothelial cells. Circ J 2009; 73: 1746-1752.
  • 14 Censarek P, Bobbe A, Grandoch M. et al. Alternatively spliced human tissue factor (asHTF) is not pro-coagulant. Thromb Haemost 2007; 97: 11-14.
  • 15 Hobbs JE, Zakarija A, Cundiff DL. et al. Alternatively spliced human tissue factor promotes tumor growth and angiogenesis in a pancreatic cancer tumor model. Thromb Res 2007; 120 (Suppl. 02) S13-S21.
  • 16 Boing AN, Hau CM, Sturk A. et al. Human alternatively spliced tissue factor is not secreted and does not trigger coagulation. J Thromb Haemost 2009; 07: 1423-1426.
  • 17 Szotowski B, Antoniak S, Rauch U. Alternatively spliced tissue factor: a previously unknown piece in the puzzle of hemostasis. Trends Cardiovasc Med 2006; 16: 177-182.
  • 18 Mackman N. Alternatively spliced tissue factor – one cut too many?. Thromb Haemost 2007; 97: 5-8.
  • 19 Ruf W, Mueller BM. Thrombin generation and the pathogenesis of cancer. Semin Thromb Hemost 2006; 32 (Suppl. 01) 61-68.
  • 20 Rickles FR, Patierno S, Fernandez PM. Tissue factor, thrombin, and cancer. Chest 2003; 124: 58S-68S.
  • 21 Rak J, Yu JL, Luyendyk J. et al. Oncogenes, trousseau syndrome, and cancer-related changes in the coagulome of mice and humans. Cancer Res 2006; 66: 10643-10646.
  • 22 Yu JL, May L, Lhotak V. et al. Oncogenic events regulate tissue factor expression in colorectal cancer cells: implications for tumor progression and angiogenesis. Blood 2005; 105: 1734-1741.
  • 23 Versteeg HH, Schaffner F, Kerver M. et al. Inhibition of tissue factor signaling suppresses tumor growth. Blood 2008; 111: 190-199.
  • 24 Belting M, Dorrell MI, Sandgren S. et al. Regulation of angiogenesis by tissue factor cytoplasmic domain signaling. Nat Med 2004; 10: 502-509.
  • 25 Dorfleutner A, Hintermann E, Tarui T. et al. Cross-talk of integrin alpha3beta1 and tissue factor in cell migration. Mol Biol Cell 2004; 15: 4416-4425.
  • 26 Ahamed J, Versteeg HH, Kerver M. et al. Disulfide isomerization switches tissue factor from coagulation to cell signaling. Proc Natl Acad Sci USA 2006; 103: 13932-13937.
  • 27 Haas SL, Jesnowski R, Steiner M. et al. Expression of tissue factor in pancreatic adenocarcinoma is associated with activation of coagulation. World J Gastroenterol 2006; 12: 4843-4849.
  • 28 Beuneu C, Vosters O, Movahedi B. et al. Human pancreatic duct cells exert tissue factor-dependent pro-coagulant activity: relevance to islet transplantation. Diabetes 2004; 53: 1407-1411.
  • 29 Yu JL, Rak JW. Shedding of tissue factor (TF)-containing microparticles rather than alternatively spliced TF is the main source of TF activit y released from human cancer cells. J Thromb Haemost 2004; 02: 2065-2067.
  • 30 Goldin-Lang P, Tran QV, Fichtner I. et al. Tissue factor expression pattern in human non-small cell lung cancer tissues indicate increased blood thrombogenicity and tumor metastasis. Oncol Rep 2008; 20: 123-128.
  • 31 Rollin J, Regina S, Gruel Y. Tumour expression of alternatively spliced tissue factor is a prognostic marker in non-small cell lung cancer. J Thromb Haemost 2009; 08: 607-610.
  • 32 Ribeiro FS, Simao TA, Amoedo ND. et al. Evidence for increased expression of tissue factor and protease-activated receptor-1 in human esophageal cancer. Oncol Rep 2009; 21: 1599-1604.
  • 33 Van den Berg YW, van den Hengel LG, Myers HR. et al. Alternatively spliced tissue factor induces angiogenesis through integrin ligation. Proc Natl Acad Sci USA 2009; 106: 19497-19502.
  • 34 Szotowski B, Goldin-Lang P, Antoniak S. et al. Alterations in myocardial tissue factor expression and cellular localization in dilated cardiomyopathy. J Am Coll Cardiol 2005; 45: 1081-1089.
  • 35 Nilsson B, Berne C, Korsgren O. The recent finding that tissue factor is produced by the pancreatic islets constitutes a possible link between insulin resistance and cardiovascular disease. Am J Ther 2005; 12: 551-554.
  • 36 Andrie RP, Bauriedel G, Braun P. et al. Increased expression of C-reactive protein and tissue factor in acute coronary syndrome lesions: Correlation with serum C-reactive protein, angioscopic findings, and modification by statins. Atherosclerosis 2009; 202: 135-143.
  • 37 Krupinski J, Turu MM, Font MA. et al. Blood-borne tissue factor activity predicts major cerebrovascular events in patients undergoing carotid endarterectomy: results from a 1-year follow-up study. Cerebrovasc Dis 2008; 25: 32-39.
  • 38 Virmani R, Kolodgie FD, Burke AP. et al. Atherosclerotic plaque progression and vulnerability to rupture: angiogenesis as a source of intraplaque hemorrhage. Arterioscler Thromb Vasc Biol 2005; 25: 2054-2061.
  • 39 Parry GC, Erlich JH, Carmeliet P. et al. Low levels of tissue factor are compatible with development and hemostasis in mice. J Clin Invest 1998; 101: 560-569.