Nervenheilkunde 2009; 28(10): 701-708
DOI: 10.1055/s-0038-1627146
Nuklearmedizinische Bildgebung
Schattauer GmbH

Nuklearmedizinische Diagnostik in der Epilepsie

Nuclear medicine approaches in epilepsy
M. J. Koepp
1   UCL Institute of Neurology, Department of Clinical and Experimental Epilepsy, London
› Author Affiliations
Further Information

Publication History

Eingegangen am: 06 June 2009

angenommen am: 09 June 2009

Publication Date:
19 January 2018 (online)

Zusammenfassung

Die prächirurgische Abklärung refraktärer fokaler Epilepsien hat das Ziel, den epileptogenen Fokus zu identifizieren und zu lokalisieren, und möglichst exakt das epileptogene Kortexareal von funktionell relevanten Kortexarealen abzugrenzen. Trotz hochauflösendem MRT findet sich jedoch bei 20 bis 50% fokaler Epilepsien kein pathologischer Befund. Diese kryptogenen Epilepsien sind die Hauptindikation für nuklearmedizinische Zusatzverfahren zur Identifizierung des epileptogenen Fokus. PET und SPECT können bei der Abklärung von therapierefraktären Epilepsiepatienten hilfreich sein, wenn das Oberflächen-EEG den Fokus nicht lokalisieren oder lateralisieren kann. Zusätzlich werden nuklearmedizinische Verfahren benötigt, wenn die Ergebnisse iktualer Anfallsaufzeichnung nicht mit der Bildgebung übereinstimmen, diskordant sind, oder aber Hinweise auf mehr als eine Läsion oder Fokus im Sinne einer „duale Pathologie“ bestehen.

Summary

The aim of presurgical evaluation is to identify and localise the epileptogenic focus, and define its borders towards functionally eloquent cortex. Despite high-resolution MRI, an epileptogenic lesion cannot be identified in 20 to 50% of focal chronic epilepsies. These socalled cryptogenic epilepsies are the main indication for nuclear medicine studies. Furthermore, PET and SPECT can be helpful during the evaluation of drug-resistant patients, if surface EEG cannot lateralize nor localize the epileptogenic focus. Even in the presence of a lesion, these nuclear medicine studies are necessary, if EEG findings are either discordant with the MRI findings or if there is evidence for multiple lesions or foci, so-called “dual pathology”.

 
  • Literatur

  • 1 Avery RA. et al. Effect of injection time on postictal SPET perfusion changes in medically refractory epilepsy. Eur J Nucl Med 1999; 26: 830-836.
  • 2 Banati RB. et al. [11C](R)-PK11195 positron emission tomography imaging of activated microglia in vivo in Rasmussen’s encephalitis. Neurology 1999; 53 (Suppl. 09) 2199-2203.
  • 3 Benedek K. et al. Longitudinal changes in cortical glucose hypometabolism in children with intractable epilepsy. J Child Neurol 2006; 21: 26-31.
  • 4 Bozzi Y, Vallone D, Borrelli E. Neuroprotective role of dopamine against hippocampal cell death. J Neurosci 2000; 20: 8643-9.
  • 5 Bouvard S. et al. Seizure-related short-term plasticity of benzodiazepine receptors in partial epilepsy: a [11C]flumazenil-PET study. Brain 2005; 128 Pt 6 1330-43.
  • 6 Chugani DC, Chugani HT. PET: mapping of serotonin synthesis. Adv Neurol 2000; 83: 165-171.
  • 7 Chugani HT. et al. Infantile spasms: I. PET identifies focal cortical dysgenesis in cryptogenic cases for surgical treatment. Ann Neurol 1990; 27 (Suppl. 04) 406-13.
  • 8 Cornford EM. et al. Dynamic [18F]fluorodeoxyglucose positron emission tomography and hypometabolic zones in seizures: Reduced capillary influx. Ann Neurol 1998; 43: 801-808.
  • 9 Devous MD. et al. SPECT brain imaging in epilepsy: A meta-analysis. J Nucl Med 1998; 39: 285-293.
  • 10 Didelot A. et al. PET imaging of brain 5-HT1A receptors in the preoperative evaluation of temporal lobe epilepsy. Brain 2008; 131: 2751-64.
  • 11 Dupont S. et al. Accurate prediction of postoperative outcome in mesial temporal lobe epilepsy: a study using positron emission tomography with 18fluorodeoxyglucose. Arch Neurol 2000; 57: 1331-6.
  • 12 Fedi M. et al. Localizing value of alpha-methyl- L-tryptophan PET in intractable epilepsy of neocortical origin. Neurology 2001; 57: 1629-1636.
  • 13 Foldvary N. et al. Correlation of hippocampal neuronal density and FDG-PET in mesial temporal lobe epilepsy. Epilepsia 1999; 40: 26-29.
  • 14 Hammers A. et al. Upregulation of opioid receptor binding following spontaneous epileptic seizures. Brain 2007; 130: 1009-16.
  • 15 Hammers A. et al. Abnormalities of grey and white matter [11C] flumazenil binding in temporal lobe epilepsy with normal MRI. Brain 2002; 125: 2257-2271.
  • 16 Hammers A. et al. Neocortical abnormalites of [11C]-flumazenil PET in mesial temporal lobe epilepsy. Neurology 2001; 56: 897-906.
  • 17 Hammers A. et al. Grey and white matter flumazenil binding in neocortical epilepsy with normal MRI. A PET study of 44 patients. Brain 2003; 126: 1300-1318.
  • 18 Hammers A. et al. Central benzodiazepine receptors in malformations of cortical development. A quantitative study. Brain 2001; 124: 1555-1565.
  • 19 Hammers A. et al. Periventricular white matter flumazenil binding and postoperative outcome in hippocampal sclerosis. Epilepsia 2005; 46: 944-948.
  • 20 Hand KS. et al. Central benzodiazepine receptor autoradiography in hippocampal sclerosis. Br J Pharmacol 1997; 122 (Suppl. 02) 358-364.
  • 21 Henry TR. et al. Hippocampal neuronal loss and regional hypometabolism in temporal lobe epilepsy. Ann Neurol 1994; 36: 925-927.
  • 22 Joo EY. et al. Postoperative alteration of cerebral glucose metabolism in mesial temporal lobe epilepsy. Brain 2005; 128: 1802-1810.
  • 23 Juhasz C. et al. Relationship of flumazenil and glucose PET abnormalities to neocortical epilepsy surgery outcome. Neurology 2001; 56: 1650-1658.
  • 24 Juhasz C. et al. Electroclinical correlates of flumazenil and fluorodeoxyglucose PET abnormalities in lesional epilepsy. Neurology 2000; 55: 825-834.
  • 25 Knowlton RC. et al. Presurgical multimodality neuroimaging in electroencephalographic lateralized temporal lobe epilepsy. Ann Neurol 1997; 42: 829-837.
  • 26 Knowlton RC. et al. In vivo hippocampal glucose metabolism in mesial temporal lobe epilepsy. Neurology 2001; 57: 1184-1190.
  • 27 Koepp MJ, Duncan JS. PET: Opiate neuroreceptor mapping. In: Henry TR, Duncan JS, Berkovic SF. (Hrsg). Functional imaging in the epilepsies. Philadelphia: Lippincott Williams & Wilkins; 2000
  • 28 Koepp M. et al. 11C-flumazenil PET in patients with refractory temporal lobe epilepsy and normal MRI. Neurology 2000; 54: 332-339.
  • 29 Koepp MJ. et al. In vivo [11C]flumazenil-PET correlates with ex vivo [3H]flumazenil autoradiography in hippocampal sclerosis. Ann Neurol 1998; 43 (Suppl. 05) 618-626.
  • 30 Koepp MJ. et al. Focal cortical release of endogenous opioids during reading-induced seizures. Lancet 1998; 352: 952-55.
  • 31 Koepp MJ. et al. 11C-flumazenil PET, volumetric MRI, and quantitative pathology in mesial temporal lobe epilepsy. Neurology 1997; 49 (Suppl. 03) 764-773.
  • 32 Koutroumanidis M. et al. Significance of interictal bilateral temporal hypometabolism in temporal lobe epilepsy. Neurology 2000; 54: 1811-1821.
  • 33 Kumlien E. et al. NMDA-receptor activity visualized with (S)-[N-methyl-11C]ketamine and positron emission tomography in patients with medial temporal lobe epilepsy. Epilepsia 1999; 40 (Suppl. 01) 30-37.
  • 34 Kumlien E. et al. PET with 11C-deuterium-deprenyl and 18F-FDG in focal epilepsy. Acta Neurol Scand 2001; 103 (Suppl. 06) 360-366.
  • 35 Marini C, Guerrini R. The role of the nicotinic acetylcholine receptors in sleep-related epilepsy. Biochem Pharmacol 2007; 74: 1308-1314.
  • 36 McDonald CR. et al. The relationship of regional frontal hypometabolism to executive function: a resting fluorodeoxyglucose PET study of patients with epilepsy and healthy controls. Epilepsy Behav 2006; 9: 58-67.
  • 37 Merlet I. et al. 5-HT1A receptor binding and intracerebral activity in temporal lobe epilepsy: an [18F]MPPF-PET study. Brain 2004; 127: 900-913.
  • 38 Merlet I. et al. Statistical parametric mapping of 5-HT1A receptor binding in temporal lobe epilepsy with hippocampal ictal onset on intracranial EEG. NeuroImage 2004; 22: 886-896.
  • 39 Muzik O. et al. Intracranial EEG versus flumazenil and glucose PET in children with extratemporal lobe epilepsy. Neurology 2000; 54 (Suppl. 01) 171-179.
  • 40 Natsume J. et al. Alpha-[11C] methyl-L-tryptophan and glucose metabolism in patients with temporal lobe epilepsy. Neurology. 2003; 60: 756-61.
  • 41 Nelissen N. et al. Correlations of interictal FDGPET metabolism and ictal SPECT perfusion changes in human temporal lobe epilepsy with hippocampal sclerosis. Neuroimage 2006; 32: 684-695.
  • 42 O’Brien TJ. et al. Subtraction ictal SPECT co-registered to MRI improves clinical usefulness of SPECT in localizing the surgical seizure focus. Neurology 1998; 50: 445-454.
  • 43 Oertzen J. et al. Standard magnetic resonance imaging is inadequate for patients with refractory focal epilepsy. Journal of Neurology, Neurosurgery, and Psychiatry 2002; 73: 643-647.
  • 44 Pennell PB. PET: Cholinergic neuroreceptor mapping. In: Henry TR, Duncan JS, Berkovic SF. (Hrsg). Functional imaging in the epilepsies. Philadelphia: Lippincott Williams & Wilkins; 2000
  • 45 Picard F. et al. Alteration of the in vivo nicotinic receptor density in ADNFLE patients: a PET study. Brain 2006; 129: 2047-2060.
  • 46 Richardson MP. et al. Cortical grey matter and benzodiazepine receptors in malformations of cortical development. A voxel-based comparison of structural and functional imaging data. Brain 1997; 120 Pt 11 1961-1973.
  • 47 Richardson MP. et al. 11C-flumazenil PET in neocortical epilepsy. Neurology 1998; 51: 485-492.
  • 48 Ryvlin P. et al. Clinical utility of flumazenil-PET versus [18F] fluorodeoxyglucose-PET and MRI in refractory partial epilepsy. A prospective study in 100 patients. Brain 1998; 121: 2067-2081.
  • 49 Ryvlin P. et al. Transient and falsely lateralizing flumazenil- PET asymmetries in temporal lobe epilepsy. Neurology 1999; 53 (Suppl. 08) 1882-1885.
  • 50 Salzberg M. et al. Depression in temporal lobe epilepsy surgery patients: An FDG-PET study. Epilepsia 2006; 47: 2125-2130.
  • 51 Savic I. et al. In-vivo demonstration of reduced benzodiazepine receptor binding in human epileptic foci. Lancet 1988; 2: 863-866.
  • 52 Savic I, Thorell JO, Roland P. [11C]Flumazenil positron emission tomography visualises frontal epileptogenic regions. Epilepsia 1995; 36: 1225-1232.
  • 53 Sharp PF. et al. Technetium-99m HM-PAO stereoisomers as potential agents for imaging regional cerebral blood flow: Human volunteer studies. J Nucl Med 1986; 27: 171-177.
  • 54 Shin WC. et al. Ictal hyperperfusion patterns according to the progression of temporal lobe seizures. Neurology 2002; 58: 373-380.
  • 55 Toczek MT. et al. PET imaging of 5-HT1A receptor binding in patients with temporal lobe epilepsy. Neurology 2003; 60: 749-56.
  • 56 Van Bogaert P. et al. Perisylvian dysgenesis. Clinical, EEG, MRI and glucose metabolism features in 10 patients. Brain 1998; 121: 2229-2238.
  • 57 Van Paesschen W. et al. The use of SPECT and PET in routine clinical practice in epilepsy. Curr Opin Neurol 2007; 20: 194-202.
  • 58 Vinton AB. et al. The extent of resection of FDGPET hypometabolism relates to outcome of temporal lobectomy. Brain 2007; 130: 548-560.
  • 59 Werhahn KJ. et al. Decreased dopamine D2/D3-receptor binding in temporal lobe epilepsy: an [18F]fallypride PET study. Epilepsia 2006; 47: 1392-1396.