Nuklearmedizin 1996; 35(05): 181-185
DOI: 10.1055/s-0038-1629805
Original Article
Schattauer GmbH

Basic Ideas and Principles for Quantifying Regional Blood Flow with Nuclear Medical Techniques

Grundlegende Ideen und Prinzipien zur Quantifizierung des regionalen Blutflusses mit nuklearmedizinischen Techniken
H. Herzog
1   Aus dem Institut für Medizin, Forschungszentrum Jülich GmbH (Leitung: Prof. Dr. med. H.W. Müller-Gärtner), Jülich, Deutschland
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Received: 16. Januar 1996

in revised form: 15. März 1996

Publikationsdatum:
03. Februar 2018 (online)

Summary

The measurement of blood flow in various organs and its visual presentation in parametric images is a major application in nuclear medicine. The purpose of this paper is to summarize the most important nuclear medicine procedures used to quantify regional blood flow. Starting with the first concepts introduced by Fick and later by Kety-Schmidt the basic principles of measuring global and regional cerebral blood are discussed and their relationships are explained. Different applications and modifications realized first in PET- and later in SPECT-studies of the brain and other organs are described. The permeability and the extraction of the different radiopharmaceuticals are considered. Finally some important instrumental implications are compared.

Zusammenfassung

Die Messung der Organdurchblutung und ihre bildliche Darstellung ist eine weitverbreitete nuklearmedizinische Anwendung. In dieser Arbeit werden die wichtigsten nuklearmedizinischen Verfahren zur Quantifizierung der Organdurchblutung aufgeführt. Ausgehend von den ersten Konzepten von Fick und später von Kety-Schmidt werden die grundlegenden Prinzipien zur Messung der gesamten und regionalen Hirndurchblutung erörtert und ihre wechselseitigen Beziehungen erklärt. Anschließend werden verschiedene hieraus folgende Anwendungen und Modifikationen beschrieben, die zunächst in der PET und später in der SPECT eingesetzt worden sind. Hierbei wird auch auf die Per-meabilitäts- und Extraktionseigenschaften der verschiedenen Radio-pharmaka eingegangen. Schließlich wird auf einige wichtige instrumenteile Aspekte hingewiesen.

 
  • REFERENCES

  • 1 Baron J, Steinling M, Tanaka T. et al. Quantitative measurement of CBF, oxygen extraction fraction (OEF) and CMRO2 with 15O continuous inhalation technique and positron emission tomography (PET): Experimental evidence and normal values in man. J Cereb Blood Flow Metab 1981; 1 Suppl. 1 S5-S6.
  • 2 Belliveau JW, Rosen BR, Kantor HL, Rzedzian RR, Kennedy DN, McKinstry RC, Vevea JM, Cohen MS, Pykett IL, Brady TJ. Functional cerebral imaging by susceptibility-contrast NMR. Magn Reson Med 1990; 14: 538-46.
  • 3 Berridge MS, Adler LP, Nelson AD, Cassidy EH, Muzic RF, Bednarczyk EM, Miraldi F. Measurement of human cerebral blood flow with [15O]butanol and positron emission tomography. J Cereb Blood Flow Metab 1991; 11: 707-15.
  • 4 Berne RM, Levy MN. (eds). Physiology. St. Louis: Mosby Co.; 1983: 574-5.
  • 5 Brix G, Gückel E, Bellemann ME, Röther J, Schwartz A, Ostertag HJ, Lorenz WJ. Functional MR Mapping of Activated Cortical Areas. Nuklearmedizin 1994; 33: 200-5.
  • 6 Chen BC, Germano G, Huang SC, Hawkins RA, Kuhle W, Hansen H, Buxton DB, Scheiben HR, Kurtz I, Maddahi J, Phelps ME. A new noninvasive method for quantification of renal blood flow with N-13 ammonia, dynamic PET and a two-compartment model. J Nucl Med 1991; 32: 953.
  • 7 Chen BC, Huang SC, Germano G, Kuhle W, Hawkins RA, Buxton D, Brunken RC, Schelbert HR, Phelps ME. Noninvasive quantification of hepatic arterial blood flow with nitrogen-13-ammonia and dynamic positron emission tomography. J Nucl Med 1991; 32: 2199-2206.
  • 8 Dole WP, Jackson DL, Rosenblatt JI. et al. Relative error and variability in blood flow with radiolabeled microspheres. Am J Physiol 1982; 243: H371-H378.
  • 9 Dondi M, Tartagni F, Osele L, Fanti S, Monetti N, Antonioli P, De Tommaso I, Franchi R, di Niro MR, Magnani B, Zheng Q-E. Identifizierung des vitalen Myokards mit der 201T1-Szintigraphie: Ein Vergleich der Methoden. Nuklearmedizin 1993; 32: 194-9.
  • 10 Fick A. Über die Messung des Blutquantums in den Herzventrikeln. Sitzungsberichte der Phys.-med. Gesellschaft zu Würzburg, 1870, S. XVI. (Stahel, Würzburg 1871). Abgedruckt in: Gesammelte Schriften von Adolf Fick; III. Band, Physiologische Schriften. Würzburg: Stahel; 1904. pp. 573-4.
  • 11 Frackowiak RSJ, Lenzi GL, Jones T, Heather JD. Quantitative measurement of regional cerebral blood flow and oxygen metabolism in man using 15O and positron emission tomography: Theory, procedure and normal values. J Comput Assist Tomogr 1980; 4: 727-36.
  • 12 Goldstein RA, Mullani NA, Wong WH, Hartz RK, Hicks CH, Fuentes F, Smalling RW, Gould KL. Positron imagimg of myocardial infarction with rubidium-82. J Nucl Med 1986; 27: 1824-9.
  • 13 Herscovitch P, Markham J, Raichle ME. Brain blood flow measured with intravenous H2 15O. I. Theory and error analysis. J Nucl Med 1983; 24: 782-9.
  • 14 Herscovitch P, Raichle ME, Kilbourn MR, Welch MJ. Positron emission tomographic measurement of cerebral blood flow and permeability-surface area product of water using [15O] water and [11Cjbutanol. J Cereb Blood Flow Metab 1987; 7: 527-42.
  • 15 Herzog H, Seitz RJ, Teilmann L, Rota Kops E, Jülicher F, Schiaug G, Kleinschmidt A, Müller-Gärtner HW. Quantitation of regional cerebral blood flow with 15O-butanol and positron emission tomography in humans. J Cereb Blood Flow Metab 1996; 16: 645-9.
  • 16 Hohenberger P, Strauss LG, Lehner B. et al. Perfusion of colorectal liver metastases and uptake of fluorouracil assessed by H2 15O and l8F-uracil positron emission tomography (PET). Eur J Cancer 1993; 29A: 1682-6.
  • 17 Holden JE, Gatley SJ, Hitchwa RD, Ip WR, Shaughnessey WJ, Nickles RJ, Polcyn RE. Cerebral blood flow using PET measurements of fluoromethane kinetics. J Nucl Med 1981; 22: 1084-8.
  • 18 Iida H, Kanno I, Takahashi K. et al. Measurement of absolute myocardial blood flow with H2 15O and dynamic positron-emission tomography - Strategy for quantification in relation to the partial-volume effect. Circulation 1988; 78: 104-115.
  • 19 Iida H, Kanno I, Miura S, Murakami M, Takahashi K, Uemura KA. Determination of the regional brain/blood partition coefficient of water using dynamic positron emission tomography. J Cereb Blood Flow Metab 1989; 9: 874-85.
  • 20 Kahn D, Weiner GJ, Ben-Haim S. et al. Positron emission tomographic measurement of bone marrow blood flow to the pelvis and lumbar vertebrae in young normal adults. Blood 1994; 83: 958-63.
  • 21 Kety SS, Schmidt CF. The nitrous oxide method for quantitative determination of cerebral blood flow in man: Theory, procedure and normal values. J Clin Invest 1948; 27: 476-83.
  • 22 Kühl DE, Barrio JR, Huang S-C. et al. Quantifying local cerebral blood flow by N-isopropyl-(I-123)p-iodoamphetamine (IMP) tomography. J Nucl Med 1982; 23: 196-203.
  • 23 Lammertsma AA, Frackowiak RSJ, Hoffman JM, Huang SC, Weinberg IN, Dahlbom M, MacDonald NS, Hoffman EJ, Mazziotta JC, Heather JD, Forse GR, Phelps ME, Jones T. The C15O2 build-up technique to measure regional cerebral blood flow and volume of distribution of water. J Cereb Blood Flow Metab 1989; 9: 461-70.
  • 24 Larson KB, Perman WH, Perlmutter JS, Gado MH, Ollinger JM, Zierler K. Tracer-kinetic analysis for measuring regional cerbral blood flow by dynamic nuclear magnetic resonance imaging. J theor Biol 1994; 170: 1-14.
  • 25 Lassen NA, Ingvar DH. Blood flow of the cerebral cortex determined by radioactive krypton-85. Experientia 1961; 17: 42.
  • 26 Lenzi G, Frackowiak RS, Jones T. et al. CMR02 and CBF by the oxygen-15 inhalation techniques: Results in normal volunteers and cerebrovascular patients. Eur Neurol 1981; 20: 285-90.
  • 27 Leveille J, Demonceau G, De Roo M. et al. Characterization of 99mTc-L, L-ECD for brain perfusion imaging. Part 2: Biodistribution and brain imaging in humans. J Nucl Med 1989; 30: 1902-10.
  • 28 Middlekauff HR, Nitzsche EU, Hamilton MA, Schelbert HR, Fonarow GC, Jaime D, Moriguchi JD, Hage A, Saleh S, Gibbs GG. Evidence for preserved cardiopulmonary baroreflex control of renal cortical blood flow in humans with advanced heart failure: A positron emission tomography study. Circulation 1995; 92: 395-401.
  • 29 Mousa SA, Cooney JM, Williams SJ. Relationship between regional myocardial blood flow and the distribution of 99mTc sestamibi in the presence of total coronary artery occlusion. Am Heart J 1990; 119: 842-7.
  • 30 Muzik O, Beanlands RSB, Hutchins GD, Manger TJ, Ngugyen N, Schwaiger M. Validation of nitrogen-13-ammonia tracer kinetic model for quantification of myocardial blood flow using PET. J Nucl Med 1993; 34: 83-91.
  • 31 Neirinckx R, Canning L, Piper I. et al. Technetium-99m d,l-HMPAO: A new radiopharmaceutical for SPECT imaging of regional cerebral blood perfusion. J Nucl Med 1987; 28: 191-202.
  • 32 Nielson AP, Morris KG, Murdock R. et al. Linear relationship between the distribution of thallium-201 and blood flow in ischemic and nonischemic myocardium during exercise. Circulation 1980; 61: 797-801.
  • 33 Nose Y, Nakamura T, Nakumara M. The microsphere method facilitates statistical assessment of regional blood flow. Basic Res Cardiol 1985; 80: 417-29.
  • 34 Peterson SE, Fox PT, Posner MI, Mintun M, Raichle ME. Positron emission tomographic studies of the cortical anatomy of single-word processing. Nature 1988; 331: 585-9.
  • 35 Pupi A, De Cristofaro MTR, Bacciottini L. et al. An analysis of the arterial input curve for technetium-99m-HMPAO: Quantification of rCBF using single-photon emission computed tomography. J Nucl Med 1991; 32: 1501-6.
  • 36 Raichle ME, Martin WRW, Herscovitch P, Mintun MA, Markham J. Brain blood flow measured with intravenous H2 15O. II. Implementation and validation. J Nucl Med 1983; 24: 790-8.
  • 37 Reske SN, Henrich MM, Mate E, Weller R, Glatting G, Grimmel S, Weismüller R, Stollfuß J, Hombach V. Nichtinvasive Bestimmung der myokardialen Ruhedurchblutung mit 82Rb bei PET bei Patienten im Vergleich zur Argon-Methode. Nuklearmedizin 1993; 32: 276-281.
  • 38 Riccabona G, Macri C. Quantitative Aspects of SPECT. Nuklearmedizin 1992; 31: 199-201.
  • 39 Schelbert HR, Phelps ME, Hoffman EJ. et al. Regional myocardial perfusion assessed with N-13 labeled ammonia and positron emission computerized axial tomography. Am J Cardiol 1979; 43: 209-18.
  • 40 Schuster DP, Howard DK. The effect of positive end-expiratory pressure on regional pulmonary perfusion during acute lung injury. J Crit Care 1994; 9: 100-10.
  • 41 Selwyn AP, Shea MJ, Foale R. et al. Regional myocardial and organ blood flow after myocardial infarction: application of the microsphere principle in man. Circulation 1986; 73: 433-43.
  • 42 Smith GT, Huang SC, Nienaber CA, Krivo-kapich J, Schelbert HR. Noninvasive quantification of regional myocardial blood flow with N-13 ammonia and dynamic PET. J Nucl Med 1988; 29: 940.
  • 43 Takeshita G, Maeda H, Nakane K. et al. Quantitative measurement of regional cerebral bood flow using N-isopropyl-(Iodine-123)p-iodoamphetamine and single-photon emission computed tomography. J Nucl Med 1992; 33: 1741-9.
  • 44 Taniguchi H, Oguro A, Takeuchi K. et al. Differences in regional hepatic blood flow in liver segments - non-invasive measurements of regional hepatic arterial and portal blood flow in human by positron emission tomography with H2 15O. Ann Nucl Med 1993; 7: 141-5.
  • 45 Walsh MN, Bergemann SR, Steele RL. et al. Delineation of impaired regional myocardial perfusion by positron emission tomography with H2 15O. Circulation 1988; 78: 612-20.
  • 46 Winchell HS, Baldwin RM, Lin TH. Development of I-123-labelled amines for brain studies localization of 1-123 Iodophenylalkyl amines in rat brain. J Nucl Med 1980; 21: 940-6.