Semin Liver Dis 2019; 39(03): 301-314
DOI: 10.1055/s-0039-1685518
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Hepatitis B Virus–Hepatocyte Interactions and Innate Immune Responses: Experimental Models and Molecular Mechanisms

Emmanuel Thomas
1   Schiff Center for Liver Diseases, University of Miami Miller School of Medicine, Miami, Florida
2   Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida
3   Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida
,
Thomas F. Baumert
4   Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
5   Laboratory of Excellence HEPSYS, University of Strasbourg, Strasbourg, France
6   Institut Hospitalo-Universitaire, Pôle hépato-digestif, Nouvel Hôpital Civil, Strasbourg, France
› Institutsangaben
Funding E.T. acknowledges support from the NIH (R35GM124915) and Florida Department of Health Bankhead-Coley Cancer Research Program (7BC03). T.F.B. acknowledges support from the European Union (ERC-AdG-HEPCIR, ERC-PoC-2016-PRELICAN, and EU H2020-667273-HEPCAR) ARC, Paris and Institut Hospitalo-Universitaire, Strasbourg (TheraHCC IHUARC IHU201301187), U Strasbourg Foundation HEPKIN, the National Institutes of Health (NCI 1R21CA209940-01A1, NIAID R03AI131066, and NIAID 5U19AI123862-02), and the Institut Universitaire de France (IUF). This work has been published under the framework of the LABEX ANR-10-LABX-0028_HEPSYS and benefits from funding from the state managed by the French National Research Agency as part of the Investments for the Future Program.
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
02. Juli 2019 (online)

Abstract

Chronic hepatitis B virus (HBV) infection is a major cause of liver disease and cancer worldwide. While current therapeutic approaches can efficiently control viral infection, efficient curative antivirals are absent. The understanding of virus–hepatocyte interactions and sensing of viral infection is an important prerequisite for the development of novel antiviral therapies for cure. Hepatocyte intrinsic innate immunity provides a rapid first line of defense to combat viral infection through the upregulation of antiviral and inflammatory genes. However, the functional relevance of many of these antiviral signaling pathways in the liver and their role in HBV pathogenesis is still only partially understood. The recent identification of intracellular RNA and DNA sensing pathways and their involvement in disease biology, including viral pathogenesis and carcinogenesis, is currently transforming our understanding of virus–host interactions. Here the authors review the current knowledge on intrinsic antiviral innate immune responses including the role of viral nucleic acid sensing pathways in the liver. Since HBV has been designated as a “stealth virus,” the study of the impact of HBV on signaling pathways in the hepatocyte is of significant interest to understand viral pathogenesis. Characterizing the mechanism underlying these HBV–host interactions and targeting related pathways to enhance antiviral innate responses may open new strategies to trigger noncytopathic clearance of covalently closed circular DNA to ultimately cure patients with chronic HBV infection.

Author Contributions

Paper concept, design, and drafting of the manuscript by E.T. and T.F.B.


 
  • References

  • 1 McMahon BJ. The natural history of chronic hepatitis B virus infection. Hepatology 2009; 49 (5, Suppl): S45-S55
  • 2 Bosetti C, Turati F, La Vecchia C. Hepatocellular carcinoma epidemiology. Best Pract Res Clin Gastroenterol 2014; 28 (05) 753-770
  • 3 Burns GS, Thompson AJ. Viral hepatitis B: clinical and epidemiological characteristics. Cold Spring Harb Perspect Med 2014; 4 (12) a024935
  • 4 Tsai KN, Kuo CF, Ou JJ. Mechanisms of hepatitis B virus persistence. Trends Microbiol 2018; 26 (01) 33-42
  • 5 Gehring AJ. New treatments to reach functional cure: rationale and challenges for emerging immune-based therapies. Best Pract Res Clin Gastroenterol 2017; 31 (03) 337-345
  • 6 Chang J, Block TM, Guo JT. The innate immune response to hepatitis B virus infection: implications for pathogenesis and therapy. Antiviral Res 2012; 96 (03) 405-413
  • 7 Gerlich WH. Medical virology of hepatitis B: how it began and where we are now. Virol J 2013; 10: 239
  • 8 Lamb C, Arbuthnot P. Activating the innate immune response to counter chronic hepatitis B virus infection. Expert Opin Biol Ther 2016; 16 (12) 1517-1527
  • 9 Gao B, Jeong WI, Tian Z. Liver: an organ with predominant innate immunity. Hepatology 2008; 47 (02) 729-736
  • 10 Thomas E, Gonzalez VD, Li Q. , et al. HCV infection induces a unique hepatic innate immune response associated with robust production of type III interferons. Gastroenterology 2012; 142 (04) 978-988
  • 11 Rosen HR. Emerging concepts in immunity to hepatitis C virus infection. J Clin Invest 2013; 123 (10) 4121-4130
  • 12 Shoukry NH. Hepatitis C vaccines, antibodies, and T cells. Front Immunol 2018; 9: 1480
  • 13 Testoni B, Durantel D, Zoulim F. Novel targets for hepatitis B virus therapy. Liver Int 2017; 37 (Suppl. 01) 33-39
  • 14 Seeger C, Mason WS. Molecular biology of hepatitis B virus infection. Virology 2015; 479-480: 672-686
  • 15 Faure-Dupuy S, Lucifora J, Durantel D. Interplay between the hepatitis B virus and innate immunity: from an understanding to the development of therapeutic concepts. Viruses 2017; 9 (05) E95
  • 16 Kawai T, Akira S. The roles of TLRs, RLRs and NLRs in pathogen recognition. Int Immunol 2009; 21 (04) 317-337
  • 17 Sato S, Li K, Kameyama T. , et al. The RNA sensor RIG-I dually functions as an innate sensor and direct antiviral factor for hepatitis B virus. Immunity 2015; 42 (01) 123-132
  • 18 Foy E, Li K, Sumpter Jr R. , et al. Control of antiviral defenses through hepatitis C virus disruption of retinoic acid-inducible gene-I signaling. Proc Natl Acad Sci U S A 2005; 102 (08) 2986-2991
  • 19 Li K, Chen Z, Kato N, Gale Jr M, Lemon SM. Distinct poly(I-C) and virus-activated signaling pathways leading to interferon-beta production in hepatocytes. J Biol Chem 2005; 280 (17) 16739-16747
  • 20 Sumpter Jr R, Loo YM, Foy E. , et al. Regulating intracellular antiviral defense and permissiveness to hepatitis C virus RNA replication through a cellular RNA helicase, RIG-I. J Virol 2005; 79 (05) 2689-2699
  • 21 Wang N, Liang Y, Devaraj S, Wang J, Lemon SM, Li K. Toll-like receptor 3 mediates establishment of an antiviral state against hepatitis C virus in hepatoma cells. J Virol 2009; 83 (19) 9824-9834
  • 22 Sun Q, Wang Q, Scott MJ, Billiar TR. Immune activation in the liver by nucleic acids. J Clin Transl Hepatol 2016; 4 (02) 151-157
  • 23 Ishikawa H, Barber GN. STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. Nature 2008; 455 (7213): 674-678
  • 24 Ishii KJ, Coban C, Kato H. , et al. A toll-like receptor-independent antiviral response induced by double-stranded B-form DNA. Nat Immunol 2006; 7 (01) 40-48
  • 25 Chiu YH, Macmillan JB, Chen ZJ. RNA polymerase III detects cytosolic DNA and induces type I interferons through the RIG-I pathway. Cell 2009; 138 (03) 576-591
  • 26 Verrier ER, Yim SA, Heydmann L. , et al. Hepatitis B virus evasion from cyclic guanosine monophosphate-adenosine monophosphate synthase sensing in human hepatocytes. Hepatology 2018; 68 (05) 1695-1709
  • 27 Cheng X, Xia Y, Serti E. , et al. Hepatitis B virus evades innate immunity of hepatocytes but activates cytokine production by macrophages. Hepatology 2017; 66 (06) 1779-1793
  • 28 Yoneda M, Hyun J, Jakubski S. , et al. Hepatitis B virus and DNA stimulation trigger a rapid innate immune response through NF-κB. J Immunol 2016; 197 (02) 630-643
  • 29 Thomsen MK, Nandakumar R, Stadler D. , et al. Lack of immunological DNA sensing in hepatocytes facilitates hepatitis B virus infection. Hepatology 2016; 64 (03) 746-759
  • 30 Rall LB, Standring DN, Laub O, Rutter WJ. Transcription of hepatitis B virus by RNA polymerase II. Mol Cell Biol 1983; 3 (10) 1766-1773
  • 31 Standring DN, Rall LB, Laub O, Rutter WJ. Hepatitis B virus encodes an RNA polymerase III transcript. Mol Cell Biol 1983; 3 (10) 1774-1782
  • 32 Jansen L, Kootstra NA, van Dort KA, Takkenberg RB, Reesink HW, Zaaijer HL. Hepatitis B virus pregenomic RNA is present in virions in plasma and is associated with a response to pegylated interferon alfa-2a and nucleos(t)ide analogues. J Infect Dis 2016; 213 (02) 224-232
  • 33 Galle PR, Hagelstein J, Kommerell B, Volkmann M, Schranz P, Zentgraf H. In vitro experimental infection of primary human hepatocytes with hepatitis B virus. Gastroenterology 1994; 106 (03) 664-673
  • 34 Seeger C, Zoulim F, Mason WS. Hepadnaviruses. In: Knipe DM, Howley PM. , eds. Field Virology. 5th ed., Vol. 2. Philadelphia, PA: Lippincott Williams & Wilkins; 2007: 2977-3027
  • 35 Wieland S, Thimme R, Purcell RH, Chisari FV. Genomic analysis of the host response to hepatitis B virus infection. Proc Natl Acad Sci U S A 2004; 101 (17) 6669-6674
  • 36 Wieland SF, Chisari FV. Stealth and cunning: hepatitis B and hepatitis C viruses. J Virol 2005; 79 (15) 9369-9380
  • 37 Guidotti LG, Rochford R, Chung J, Shapiro M, Purcell R, Chisari FV. Viral clearance without destruction of infected cells during acute HBV infection. Science 1999; 284 (5415): 825-829
  • 38 Stacey AR, Norris PJ, Qin L. , et al. Induction of a striking systemic cytokine cascade prior to peak viremia in acute human immunodeficiency virus type 1 infection, in contrast to more modest and delayed responses in acute hepatitis B and C virus infections. J Virol 2009; 83 (08) 3719-3733
  • 39 Dunn C, Peppa D, Khanna P. , et al. Temporal analysis of early immune responses in patients with acute hepatitis B virus infection. Gastroenterology 2009; 137 (04) 1289-1300
  • 40 Tan AT, Koh S, Goh W. , et al. A longitudinal analysis of innate and adaptive immune profile during hepatic flares in chronic hepatitis B. J Hepatol 2010; 52 (03) 330-339
  • 41 Luangsay S, Ait-Goughoulte M, Michelet M. , et al. Expression and functionality of Toll- and RIG-like receptors in HepaRG cells. J Hepatol 2015; 63 (05) 1077-1085
  • 42 Giersch K, Allweiss L, Volz T. , et al. Hepatitis Delta co-infection in humanized mice leads to pronounced induction of innate immune responses in comparison to HBV mono-infection. J Hepatol 2015; 63 (02) 346-353
  • 43 Papatheodoridis G, Goulis J, Manolakopoulos S. , et al. Changes of HBsAg and interferon-inducible protein 10 serum levels in naive HBeAg-negative chronic hepatitis B patients under 4-year entecavir therapy. J Hepatol 2014; 60 (01) 62-68
  • 44 Luangsay S, Gruffaz M, Isorce N. , et al. Early inhibition of hepatocyte innate responses by hepatitis B virus. J Hepatol 2015; 63 (06) 1314-1322
  • 45 Bauer T, Sprinzl M, Protzer U. Immune control of hepatitis B virus. Dig Dis 2011; 29 (04) 423-433
  • 46 Villeneuve JP. The natural history of chronic hepatitis B virus infection. J Clin Virol 2005; 34 (Suppl. 01) S139-S142
  • 47 Verrier ER, Colpitts CC, Schuster C, Zeisel MB, Baumert TF. Cell culture models for the investigation of hepatitis B and D virus infection. Viruses 2016; 8 (09) E261
  • 48 Thomas E, Liang TJ. Experimental models of hepatitis B and C – new insights and progress. Nat Rev Gastroenterol Hepatol 2016; 13 (06) 362-374
  • 49 Naik S, Russell SJ. Engineering oncolytic viruses to exploit tumor specific defects in innate immune signaling pathways. Expert Opin Biol Ther 2009; 9 (09) 1163-1176
  • 50 Keskinen P, Nyqvist M, Sareneva T, Pirhonen J, Melén K, Julkunen I. Impaired antiviral response in human hepatoma cells. Virology 1999; 263 (02) 364-375
  • 51 Melén K, Keskinen P, Lehtonen A, Julkunen I. Interferon-induced gene expression and signaling in human hepatoma cell lines. J Hepatol 2000; 33 (05) 764-772
  • 52 Israelow B, Narbus CM, Sourisseau M, Evans MJ. HepG2 cells mount an effective antiviral interferon-lambda based innate immune response to hepatitis C virus infection. Hepatology 2014; 60 (04) 1170-1179
  • 53 Naka K, Dansako H, Kobayashi N, Ikeda M, Kato N. Hepatitis C virus NS5B delays cell cycle progression by inducing interferon-beta via toll-like receptor 3 signaling pathway without replicating viral genomes. Virology 2006; 346 (02) 348-362
  • 54 Yu S, Chen J, Wu M, Chen H, Kato N, Yuan Z. Hepatitis B virus polymerase inhibits RIG-I- and toll-like receptor 3-mediated beta interferon induction in human hepatocytes through interference with interferon regulatory factor 3 activation and dampening of the interaction between TBK1/IKKepsilon and DDX3. J Gen Virol 2010; 91 (Pt 8): 2080-2090
  • 55 Bility MT, Cheng L, Zhang Z. , et al. Hepatitis B virus infection and immunopathogenesis in a humanized mouse model: induction of human-specific liver fibrosis and M2-like macrophages. PLoS Pathog 2014; 10 (03) e1004032
  • 56 Gripon P, Rumin S, Urban S. , et al. Infection of a human hepatoma cell line by hepatitis B virus. Proc Natl Acad Sci U S A 2002; 99 (24) 15655-15660
  • 57 Guillouzo A, Corlu A, Aninat C, Glaise D, Morel F, Guguen-Guillouzo C. The human hepatoma HepaRG cells: a highly differentiated model for studies of liver metabolism and toxicity of xenobiotics. Chem Biol Interact 2007; 168 (01) 66-73
  • 58 Andersson TB, Kanebratt KP, Kenna JG. The HepaRG cell line: a unique in vitro tool for understanding drug metabolism and toxicology in human. Expert Opin Drug Metab Toxicol 2012; 8 (07) 909-920
  • 59 Michailidis E, Pabon J, Xiang K. , et al. A robust cell culture system supporting the complete life cycle of hepatitis B virus. Sci Rep 2017; 7 (01) 16616
  • 60 Schulze A, Gripon P, Urban S. Hepatitis B virus infection initiates with a large surface protein-dependent binding to heparan sulfate proteoglycans. Hepatology 2007; 46 (06) 1759-1768
  • 61 Tu T, Budzinska MA, Vondran FWR, Shackel NA, Urban S. Hepatitis B virus DNA integration occurs early in the viral life cycle in an in vitro infection model via NTCP-dependent uptake of enveloped virus particles. J Virol 2018; JVI.02007-17
  • 62 Li MMH, MacDonald MR, Rice CM. To translate, or not to translate: viral and host mRNA regulation by interferon-stimulated genes. Trends Cell Biol 2015; 25 (06) 320-329
  • 63 Schoggins JW, Wilson SJ, Panis M. , et al. A diverse range of gene products are effectors of the type I interferon antiviral response. Nature 2011; 472 (7344): 481-485
  • 64 Andrus L, Marukian S, Jones CT. , et al. Expression of paramyxovirus V proteins promotes replication and spread of hepatitis C virus in cultures of primary human fetal liver cells. Hepatology 2011; 54 (06) 1901-1912
  • 65 Hyun I. Policy: Regulate embryos made for research. Nature 2014; 509 (7498): 27-28
  • 66 Elaut G, Henkens T, Papeleu P. , et al. Molecular mechanisms underlying the dedifferentiation process of isolated hepatocytes and their cultures. Curr Drug Metab 2006; 7 (06) 629-660
  • 67 Rijntjes PJM, Moshage HJ, Yap SH. In vitro infection of primary cultures of cryopreserved adult human hepatocytes with hepatitis B virus. Virus Res 1988; 10 (01) 95-109
  • 68 Gripon P, Diot C, Thézé N. , et al. Hepatitis B virus infection of adult human hepatocytes cultured in the presence of dimethyl sulfoxide. J Virol 1988; 62 (11) 4136-4143
  • 69 Ochiya T, Tsurimoto T, Ueda K, Okubo K, Shiozawa M, Matsubara K. An in vitro system for infection with hepatitis B virus that uses primary human fetal hepatocytes. Proc Natl Acad Sci U S A 1989; 86 (06) 1875-1879
  • 70 Shlomai A, Schwartz RE, Ramanan V. , et al. Modeling host interactions with hepatitis B virus using primary and induced pluripotent stem cell-derived hepatocellular systems. Proc Natl Acad Sci U S A 2014; 111 (33) 12193-12198
  • 71 Wu X, Robotham JM, Lee E. , et al. Productive hepatitis C virus infection of stem cell-derived hepatocytes reveals a critical transition to viral permissiveness during differentiation. PLoS Pathog 2012; 8 (04) e1002617
  • 72 Gómez-Lechón MJ, Donato MT, Castell JV, Jover R. Human hepatocytes in primary culture: the choice to investigate drug metabolism in man. Curr Drug Metab 2004; 5 (05) 443-462
  • 73 Sheahan T, Imanaka N, Marukian S. , et al. Interferon lambda alleles predict innate antiviral immune responses and hepatitis C virus permissiveness. Cell Host Microbe 2014; 15 (02) 190-202
  • 74 Schwartz RE, Shan J, Duncan SA, Goessling W, Bhatia S. Engineering the microenvironment of differentiating IPS derived hepatocyte-like cells enables acquisition of an adult phenotype. Gastroenterology 2013; 144 (05) S1025
  • 75 Shan J, Schwartz RE, Ross NT. , et al. Identification of small molecules for human hepatocyte expansion and iPS differentiation. Nat Chem Biol 2013; 9 (08) 514-520
  • 76 Asumda FZ, Hatzistergos KE, Dykxhoorn DM. , et al. Differentiation of hepatocyte-like cells from human pluripotent stem cells using small molecules. Differentiation 2018; 101: 16-24
  • 77 Zhang L, Dailey PJ, Gettie A, Blanchard J, Ho DD. The liver is a major organ for clearing simian immunodeficiency virus in rhesus monkeys. J Virol 2002; 76 (10) 5271-5273
  • 78 He XS, Nanda S, Ji X, Calderon-Rodriguez GM, Greenberg HB, Liang TJ. Differential transcriptional responses to interferon-alpha and interferon-gamma in primary human hepatocytes. J Interferon Cytokine Res 2010; 30 (05) 311-320
  • 79 Nakamoto N, Kanai T. Role of toll-like receptors in immune activation and tolerance in the liver. Front Immunol 2014; 5: 221
  • 80 Takeda K, Akira S. Toll-like receptors in innate immunity. Int Immunol 2005; 17 (01) 1-14
  • 81 Pei RJ, Chen XW, Lu MJ. Control of hepatitis B virus replication by interferons and toll-like receptor signaling pathways. World J Gastroenterol 2014; 20 (33) 11618-11629
  • 82 Zhang E, Lu M. Toll-like receptor (TLR)-mediated innate immune responses in the control of hepatitis B virus (HBV) infection. Med Microbiol Immunol (Berl) 2015; 204 (01) 11-20
  • 83 Kumar H, Kawai T, Akira S. Pathogen recognition in the innate immune response. Biochem J 2009; 420 (01) 1-16
  • 84 Gao D, Wu J, Wu YT. , et al. Cyclic GMP-AMP synthase is an innate immune sensor of HIV and other retroviruses. Science 2013; 341 (6148): 903-906
  • 85 Schoggins JW, MacDuff DA, Imanaka N. , et al. Pan-viral specificity of IFN-induced genes reveals new roles for cGAS in innate immunity. Nature 2014; 505 (7485): 691-695
  • 86 Cui X, Clark DN, Liu K, Xu XD, Guo JT, Hu J. Viral DNA-dependent induction of innate immune response to hepatitis B virus in immortalized mouse hepatocytes. J Virol 2015; 90 (01) 486-496
  • 87 Dansako H, Ueda Y, Okumura N. , et al. The cyclic GMP-AMP synthetase-STING signaling pathway is required for both the innate immune response against HBV and the suppression of HBV assembly. FEBS J 2016; 283 (01) 144-156
  • 88 Guo F, Han Y, Zhao X. , et al. STING agonists induce an innate antiviral immune response against hepatitis B virus. Antimicrob Agents Chemother 2015; 59 (02) 1273-1281
  • 89 Paludan SR, Bowie AG. Immune sensing of DNA. Immunity 2013; 38 (05) 870-880
  • 90 Zhang X, Shi H, Wu J. , et al. Cyclic GMP-AMP containing mixed phosphodiester linkages is an endogenous high-affinity ligand for STING. Mol Cell 2013; 51 (02) 226-235
  • 91 Dempsey A, Bowie AG. Innate immune recognition of DNA: a recent history. Virology 2015; 479–480: 146-152
  • 92 Bürckstümmer T, Baumann C, Blüml S. , et al. An orthogonal proteomic-genomic screen identifies AIM2 as a cytoplasmic DNA sensor for the inflammasome. Nat Immunol 2009; 10 (03) 266-272
  • 93 Chen J, Wu M, Zhang X. , et al. Hepatitis B virus polymerase impairs interferon-α-induced STA T activation through inhibition of importin-α5 and protein kinase C-δ. Hepatology 2013; 57 (02) 470-482
  • 94 Mutz P, Metz P, Lempp FA. , et al. HBV bypasses the innate immune response and does not protect HCV from antiviral activity of interferon. Gastroenterology 2018; 154 (06) 1791.e22-1804.e22
  • 95 Konerman MA, Lok AS. Interferon treatment for hepatitis B. Clin Liver Dis 2016; 20 (04) 645-665
  • 96 Rehermann B, Bertoletti A. Immunological aspects of antiviral therapy of chronic hepatitis B virus and hepatitis C virus infections. Hepatology 2015; 61 (02) 712-721
  • 97 Lucifora J, Xia Y, Reisinger F. , et al. Specific and nonhepatotoxic degradation of nuclear hepatitis B virus cccDNA. Science 2014; 343 (6176): 1221-1228
  • 98 Ortega-Prieto AM, Dorner M. Immune evasion strategies during chronic hepatitis B and C virus infection. Vaccines (Basel) 2017; 5 (03) E24
  • 99 Thomas DL, Thio CL, Martin MP. , et al. Genetic variation in IL28B and spontaneous clearance of hepatitis C virus. Nature 2009; 461 (7265): 798-801
  • 100 Khan M, Syed GH, Kim SJ, Siddiqui A. Hepatitis B virus-induced Parkin-dependent recruitment of linear ubiquitin assembly complex (LUBAC) to mitochondria and attenuation of innate immunity. PLoS Pathog 2016; 12 (06) e1005693
  • 101 Suslov A, Wieland S, Menne S. Modulators of innate immunity as novel therapeutics for treatment of chronic hepatitis B. Curr Opin Virol 2018; 30: 9-17
  • 102 Wang H, Ryu WS. Hepatitis B virus polymerase blocks pattern recognition receptor signaling via interaction with DDX3: implications for immune evasion. PLoS Pathog 2010; 6 (07) e1000986
  • 103 Morikawa K, Shimazaki T, Takeda R, Izumi T, Umumura M, Sakamoto N. Hepatitis B: progress in understanding chronicity, the innate immune response, and cccDNA protection. Ann Transl Med 2016; 4 (18) 337
  • 104 Lim KH, Park ES, Kim DH. , et al. Suppression of interferon-mediated anti-HBV response by single CpG methylation in the 5′-UTR of TRIM22. Gut 2018; 67 (01) 166-178
  • 105 Wan Y, Cao W, Han T. , et al. Inducible Rubicon facilitates viral replication by antagonizing interferon production. Cell Mol Immunol 2017; 14 (07) 607-620
  • 106 Wentz MJ, Becker SA, Slagle BL. Dissociation of DDB1-binding and transactivation properties of the hepatitis B virus X protein. Virus Res 2000; 68 (01) 87-92
  • 107 Murphy CM, Xu Y, Li F. , et al. Hepatitis B virus x protein promotes degradation of SMC5/6 to enhance HBV replication. Cell Reports 2016; 16 (11) 2846-2854
  • 108 Decorsière A, Mueller H, van Breugel PC. , et al. Hepatitis B virus X protein identifies the Smc5/6 complex as a host restriction factor. Nature 2016; 531 (7594): 386-389
  • 109 Fernández M, Quiroga JA, Carreño V. Hepatitis B virus downregulates the human interferon-inducible MxA promoter through direct interaction of precore/core proteins. J Gen Virol 2003; 84 (Pt 8): 2073-2082
  • 110 Suslov A, Boldanova T, Wang X, Wieland S, Heim MH. Hepatitis B virus does not interfere with innate immune responses in the human liver. Gastroenterology 2018; 154 (06) 1778-1790
  • 111 Lu HL, Liao F. Melanoma differentiation-associated gene 5 senses hepatitis B virus and activates innate immune signaling to suppress virus replication. J Immunol 2013; 191 (06) 3264-3276
  • 112 Fletcher SP, Chin DJ, Ji Y. , et al. Transcriptomic analysis of the woodchuck model of chronic hepatitis B. Hepatology 2012; 56 (03) 820-830
  • 113 Barber GN. Cytoplasmic DNA innate immune pathways. Immunol Rev 2011; 243 (01) 99-108
  • 114 Takeda K. Evolution and integration of innate immune recognition systems: the toll-like receptors. J Endotoxin Res 2005; 11 (01) 51-55
  • 115 Kondo T, Kobayashi J, Saitoh T. , et al. DNA damage sensor MRE11 recognizes cytosolic double-stranded DNA and induces type I interferon by regulating STING trafficking. Proc Natl Acad Sci U S A 2013; 110 (08) 2969-2974
  • 116 Du K, Liu J, Broering R. , et al. Recent advances in the discovery and development of TLR ligands as novel therapeutics for chronic HBV and HIV infections. Expert Opin Drug Discov 2018; 13 (07) 661-670