Semin Respir Crit Care Med 2020; 41(02): 288-298
DOI: 10.1055/s-0039-3402727
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Pulmonary Alveolar Proteinosis Syndrome

Alan Kelly
1   Department of Respiratory Medicine, St. Vincent's University Hospital, Dublin, Ireland
2   Department of Medicine, University College Dublin, Dublin, Ireland
,
Cormac McCarthy
1   Department of Respiratory Medicine, St. Vincent's University Hospital, Dublin, Ireland
2   Department of Medicine, University College Dublin, Dublin, Ireland
› Author Affiliations
Further Information

Publication History

Publication Date:
12 April 2020 (online)

Abstract

Pulmonary alveolar proteinosis (PAP) is a syndrome characterized by progressive accumulation of pulmonary surfactant. This results in dyspnea, secondary pulmonary and systemic infection, and in some cases respiratory failure. PAP syndrome occurs in distinct diseases, classified according to pathogenetic mechanism; these include primary PAP (due to disruption of granulocyte-macrophage colony-stimulating factor [GM-CSF] signaling), secondary PAP (due to reduction in alveolar macrophage numbers/functions), and congenital PAP (due to disruption of surfactant production). In primary PAP, the most common cause is autoimmune PAP, which accounts for over 90% of all PAP syndrome. The pathogenesis is driven by reduced GM-CSF-signaling causing abnormal alveolar macrophage function which subsequently results in impaired alveolar surfactant clearance. Autoimmune PAP can be accurately diagnosed by serum GM-CSF autoantibody levels and there now exist other diagnostic tests for rare causes of PAP syndrome. The current standard treatment is whole lung lavage; however, there is emerging evidence to support the use of novel therapeutic approaches, including inhaled GM-CSF, immune modulation, gene and cell therapy, and targeting macrophage cholesterol homeostasis. Furthermore, several innovative approaches to monitor disease severity and response to therapy have recently been developed.

 
  • References

  • 1 Trapnell BC, Whitsett JA, Nakata K. Pulmonary alveolar proteinosis. N Engl J Med 2003; 349 (26) 2527-2539
  • 2 Seymour JF, Presneill JJ. Pulmonary alveolar proteinosis: progress in the first 44 years. Am J Respir Crit Care Med 2002; 166 (02) 215-235
  • 3 Carey B, Trapnell BC. The molecular basis of pulmonary alveolar proteinosis. Clin Immunol 2010; 135 (02) 223-235
  • 4 Inoue Y, Trapnell BC, Tazawa R. , et al; Japanese Center of the Rare Lung Diseases Consortium. Characteristics of a large cohort of patients with autoimmune pulmonary alveolar proteinosis in Japan. Am J Respir Crit Care Med 2008; 177 (07) 752-762
  • 5 Xu Z, Jing J, Wang H, Xu F, Wang J. Pulmonary alveolar proteinosis in China: a systematic review of 241 cases. Respirology 2009; 14 (05) 761-766
  • 6 Bonella F, Bauer PC, Griese M, Ohshimo S, Guzman J, Costabel U. Pulmonary alveolar proteinosis: new insights from a single-center cohort of 70 patients. Respir Med 2011; 105 (12) 1908-1916
  • 7 Campo I, Mariani F, Rodi G. , et al. Assessment and management of pulmonary alveolar proteinosis in a reference center. Orphanet J Rare Dis 2013; 8: 40
  • 8 Trapnell BC, Luisetti M. Pulmonary alveolar proteinosis syndrome. In: Broaddus VC, Mason RJ, Ernst JD. , et al, eds. Murray and Nadel's Textbook of Respiratory Medicine. 6th ed. Philadelphia, PA: Elsevier Saunders; 2016. : Chapter 70. Page 1259
  • 9 Whitsett JA, Wert SE, Weaver TE. Diseases of pulmonary surfactant homeostasis. Annu Rev Pathol 2015; 10: 371-393
  • 10 Perez-Gil J, Weaver TE. Pulmonary surfactant pathophysiology: current models and open questions. Physiology (Bethesda) 2010; 25 (03) 132-141
  • 11 Veldhuizen R, Nag K, Orgeig S, Possmayer F. The role of lipids in pulmonary surfactant. Biochim Biophys Acta 1998; 1408 (2-3): 90-108
  • 12 Shibata Y, Berclaz PY, Chroneos ZC, Yoshida M, Whitsett JA, Trapnell BC. GM-CSF regulates alveolar macrophage differentiation and innate immunity in the lung through PU.1. Immunity 2001; 15 (04) 557-567
  • 13 Schneider C, Nobs SP, Kurrer M, Rehrauer H, Thiele C, Kopf M. Induction of the nuclear receptor PPAR-γ by the cytokine GM-CSF is critical for the differentiation of fetal monocytes into alveolar macrophages. Nat Immunol 2014; 15 (11) 1026-1037
  • 14 Bonfield TL, Raychaudhuri B, Malur A. , et al. PU.1 regulation of human alveolar macrophage differentiation requires granulocyte-macrophage colony-stimulating factor. Am J Physiol Lung Cell Mol Physiol 2003; 285 (05) L1132-L1136
  • 15 Stanley E, Lieschke GJ, Grail D. , et al. Granulocyte/macrophage colony-stimulating factor-deficient mice show no major perturbation of hematopoiesis but develop a characteristic pulmonary pathology. Proc Natl Acad Sci U S A 1994; 91 (12) 5592-5596
  • 16 Dranoff G, Crawford AD, Sadelain M. , et al. Involvement of granulocyte-macrophage colony-stimulating factor in pulmonary homeostasis. Science 1994; 264 (5159): 713-716
  • 17 Yoshida M, Ikegami M, Reed JA, Chroneos ZC, Whitsett JA. GM-CSF regulates protein and lipid catabolism by alveolar macrophages. Am J Physiol Lung Cell Mol Physiol 2001; 280 (03) L379-L386
  • 18 Nishinakamura R, Nakayama N, Hirabayashi Y. , et al. Mice deficient for the IL-3/GM-CSF/IL-5 beta c receptor exhibit lung pathology and impaired immune response, while beta IL3 receptor-deficient mice are normal. Immunity 1995; 2 (03) 211-222
  • 19 Robb L, Drinkwater CC, Metcalf D. , et al. Hematopoietic and lung abnormalities in mice with a null mutation of the common beta subunit of the receptors for granulocyte-macrophage colony-stimulating factor and interleukins 3 and 5. Proc Natl Acad Sci U S A 1995; 92 (21) 9565-9569
  • 20 Ikegami M, Ueda T, Hull W. , et al. Surfactant metabolism in transgenic mice after granulocyte macrophage-colony stimulating factor ablation. Am J Physiol 1996; 270 (4 Pt 1): L650-L658
  • 21 Berclaz PY, Zsengellér Z, Shibata Y. , et al. Endocytic internalization of adenovirus, nonspecific phagocytosis, and cytoskeletal organization are coordinately regulated in alveolar macrophages by GM-CSF and PU.1. J Immunol 2002; 169 (11) 6332-6342
  • 22 Berclaz PY, Carey B, Fillipi MD. , et al. GM-CSF regulates a PU.1-dependent transcriptional program determining the pulmonary response to LPS. Am J Respir Cell Mol Biol 2007; 36 (01) 114-121
  • 23 LeVine AM, Reed JA, Kurak KE, Cianciolo E, Whitsett JA. GM-CSF-deficient mice are susceptible to pulmonary group B streptococcal infection. J Clin Invest 1999; 103 (04) 563-569
  • 24 Paine III R, Preston AM, Wilcoxen S. , et al. Granulocyte-macrophage colony-stimulating factor in the innate immune response to Pneumocystis carinii pneumonia in mice. J Immunol 2000; 164 (05) 2602-2609
  • 25 Paine III R, Morris SB, Jin H. , et al. Impaired functional activity of alveolar macrophages from GM-CSF-deficient mice. Am J Physiol Lung Cell Mol Physiol 2001; 281 (05) L1210-L1218
  • 26 Seymour JF, Lieschke GJ, Grail D, Quilici C, Hodgson G, Dunn AR. Mice lacking both granulocyte colony-stimulating factor (CSF) and granulocyte-macrophage CSF have impaired reproductive capacity, perturbed neonatal granulopoiesis, lung disease, amyloidosis, and reduced long-term survival. Blood 1997; 90 (08) 3037-3049
  • 27 Zhan Y, Lieschke GJ, Grail D, Dunn AR, Cheers C. Essential roles for granulocyte-macrophage colony-stimulating factor (GM-CSF) and G-CSF in the sustained hematopoietic response of Listeria monocytogenes-infected mice. Blood 1998; 91 (03) 863-869
  • 28 Riopel J, Tam M, Mohan K, Marino MW, Stevenson MM. Granulocyte-macrophage colony-stimulating factor-deficient mice have impaired resistance to blood-stage malaria. Infect Immun 2001; 69 (01) 129-136
  • 29 Gonzalez-Juarrero M, Hattle JM, Izzo A. , et al. Disruption of granulocyte macrophage-colony stimulating factor production in the lungs severely affects the ability of mice to control Mycobacterium tuberculosis infection. J Leukoc Biol 2005; 77 (06) 914-922
  • 30 Ballinger MN, Paine III R, Serezani CH. , et al. Role of granulocyte macrophage colony-stimulating factor during gram-negative lung infection with Pseudomonas aeruginosa . Am J Respir Cell Mol Biol 2006; 34 (06) 766-774
  • 31 Seymour JF. Extra-pulmonary aspects of acquired pulmonary alveolar proteinosis as predicted by granulocyte-macrophage colony-stimulating factor-deficient mice. Respirology 2006; 11 (11 Suppl): S16-S22
  • 32 Huang FF, Barnes PF, Feng Y. , et al. GM-CSF in the lung protects against lethal influenza infection. Am J Respir Crit Care Med 2011; 184 (02) 259-268
  • 33 Uchida K, Beck DC, Yamamoto T. , et al. GM-CSF autoantibodies and neutrophil dysfunction in pulmonary alveolar proteinosis. N Engl J Med 2007; 356 (06) 567-579
  • 34 Kitamura T, Tanaka N, Watanabe J. , et al. Idiopathic pulmonary alveolar proteinosis as an autoimmune disease with neutralizing antibody against granulocyte/macrophage colony-stimulating factor. J Exp Med 1999; 190 (06) 875-880
  • 35 Tanaka N, Watanabe J, Kitamura T, Yamada Y, Kanegasaki S, Nakata K. Lungs of patients with idiopathic pulmonary alveolar proteinosis express a factor which neutralizes granulocyte-macrophage colony stimulating factor. FEBS Lett 1999; 442 (2-3): 246-250
  • 36 Sakagami T, Uchida K, Suzuki T. , et al. Human GM-CSF autoantibodies and reproduction of pulmonary alveolar proteinosis. N Engl J Med 2009; 361 (27) 2679-2681
  • 37 Sakagami T, Beck D, Uchida K. , et al. Patient-derived granulocyte/macrophage colony-stimulating factor autoantibodies reproduce pulmonary alveolar proteinosis in nonhuman primates. Am J Respir Crit Care Med 2010; 182 (01) 49-61
  • 38 Bendtzen K, Svenson M, Hansen MB. GM-CSF autoantibodies in pulmonary alveolar proteinosis. N Engl J Med 2007; 356 (19) 2001-2002 , author reply 2002
  • 39 Seymour JF, Doyle IR, Nakata K. , et al. Relationship of anti-GM-CSF antibody concentration, surfactant protein A and B levels, and serum LDH to pulmonary parameters and response to GM-CSF therapy in patients with idiopathic alveolar proteinosis. Thorax 2003; 58 (03) 252-257
  • 40 Martinez-Moczygemba M, Doan ML, Elidemir O. , et al. Pulmonary alveolar proteinosis caused by deletion of the GM-CSFRalpha gene in the X chromosome pseudoautosomal region 1. J Exp Med 2008; 205 (12) 2711-2716
  • 41 Suzuki T, Maranda B, Sakagami T. , et al. Hereditary pulmonary alveolar proteinosis caused by recessive CSF2RB mutations. Eur Respir J 2011; 37 (01) 201-204
  • 42 Suzuki T, Sakagami T, Rubin BK. , et al. Familial pulmonary alveolar proteinosis caused by mutations in CSF2RA. J Exp Med 2008; 205 (12) 2703-2710
  • 43 Suzuki T, Sakagami T, Young LR. , et al. Hereditary pulmonary alveolar proteinosis: pathogenesis, presentation, diagnosis, and therapy. Am J Respir Crit Care Med 2010; 182 (10) 1292-1304
  • 44 Tanaka T, Motoi N, Tsuchihashi Y. , et al. Adult-onset hereditary pulmonary alveolar proteinosis caused by a single-base deletion in CSF2RB. J Med Genet 2011; 48 (03) 205-209
  • 45 Hadchouel A, Wieland T, Griese M. , et al. Biallelic mutations of methionyl-tRNA synthetase cause a specific type of pulmonary alveolar proteinosis prevalent on Réunion island. Am J Hum Genet 2015; 96 (05) 826-831
  • 46 Cordonnier C, Fleury-Feith J, Escudier E, Atassi K, Bernaudin JF. Secondary alveolar proteinosis is a reversible cause of respiratory failure in leukemic patients. Am J Respir Crit Care Med 1994; 149 (3 Pt 1): 788-794
  • 47 Ishii H, Tazawa R, Kaneko C. , et al. Clinical features of secondary pulmonary alveolar proteinosis: pre-mortem cases in Japan. Eur Respir J 2011; 37 (02) 465-468
  • 48 Ishii H, Trapnell BC, Tazawa R. , et al; Japanese Center of the Rare Lung Disease Consortium. Comparative study of high-resolution CT findings between autoimmune and secondary pulmonary alveolar proteinosis. Chest 2009; 136 (05) 1348-1355
  • 49 Kita H, Muro S, Nakano Y. , et al. An autopsy case of acute lymphocytic leukemia associated with secondary pulmonary alveolar proteinosis and systemic aspergillosis [in Japanese]. Nihon Kyobu Shikkan Gakkai Zasshi 1993; 31 (03) 374-378
  • 50 Ohnishi T, Yamada G, Shijubo N. , et al. Secondary pulmonary alveolar proteinosis associated with myelodysplastic syndrome. Intern Med 2003; 42 (02) 187-190
  • 51 Ruben FL, Talamo TS. Secondary pulmonary alveolar proteinosis occurring in two patients with acquired immune deficiency syndrome. Am J Med 1986; 80 (06) 1187-1190
  • 52 Patiroglu T, Akyildiz B, Patiroglu TE, Gulmez IY. Recurrent pulmonary alveolar proteinosis secondary to agammaglobulinemia. Pediatr Pulmonol 2008; 43 (07) 710-713
  • 53 Zhang D, Tian X, Feng R. , et al. Secondary pulmonary alveolar proteinosis: a single-center retrospective study (a case series and literature review). BMC Pulm Med 2018; 18 (01) 15
  • 54 Griese M, Zarbock R, Costabel U. , et al. GATA2 deficiency in children and adults with severe pulmonary alveolar proteinosis and hematologic disorders. BMC Pulm Med 2015; 15: 87
  • 55 McCarthy C, Avetisyan R, Carey BC, Chalk C, Trapnell BC. Prevalence and healthcare burden of pulmonary alveolar proteinosis. Orphanet J Rare Dis 2018; 13 (01) 129
  • 56 Carey B, McCarthy C, Nowell-Bostic M. , et al. Autoimmune pulmonary alveolar proteinosis: presentation, clinical manifestations and current therapeutic approaches. Am J Respir Crit Care Med 2018; A3117
  • 57 Rosen SH, Castleman B, Liebow AA. Pulmonary alveolar proteinosis. N Engl J Med 1958; 258 (23) 1123-1142
  • 58 Wang BM, Stern EJ, Schmidt RA, Pierson DJ. Diagnosing pulmonary alveolar proteinosis. A review and an update. Chest 1997; 111 (02) 460-466
  • 59 Holbert JM, Costello P, Li W, Hoffman RM, Rogers RM. CT features of pulmonary alveolar proteinosis. AJR Am J Roentgenol 2001; 176 (05) 1287-1294
  • 60 Lee KN, Levin DL, Webb WR, Chen D, Storto ML, Golden JA. Pulmonary alveolar proteinosis: high-resolution CT, chest radiographic, and functional correlations. Chest 1997; 111 (04) 989-995
  • 61 Johkoh T, Itoh H, Müller NL. , et al. Crazy-paving appearance at thin-section CT: spectrum of disease and pathologic findings. Radiology 1999; 211 (01) 155-160
  • 62 Goldstein LS, Kavuru MS, Curtis-McCarthy P, Christie HA, Farver C, Stoller JK. Pulmonary alveolar proteinosis: clinical features and outcomes. Chest 1998; 114 (05) 1357-1362
  • 63 Martin RJ, Rogers RM, Myers NM. Pulmonary alveolar proteinosis: shunt fraction and lactic acid dehydrogenase concentration as aids to diagnosis. Am Rev Respir Dis 1978; 117 (06) 1059-1062
  • 64 Griese M, Bonella F, Costabel U, de Blic J, Tran NB, Liebisch G. Quantitative lipidomics in pulmonary alveolar proteinosis. Am J Respir Crit Care Med 2019; 200 (07) 881-887
  • 65 Trapnell BC, Nakata K, Bonella F. , et al. Pulmonary alveolar proteinosis. Nat Rev Dis Primers 2019; 5 (01) 16
  • 66 Trapnell BC, McCarthy C. The alveolar lipidome in pulmonary alveolar proteinosis. A new target for therapeutic development?. Am J Respir Crit Care Med 2019; 200 (07) 800-802
  • 67 Milleron BJ, Costabel U, Teschler H. , et al. Bronchoalveolar lavage cell data in alveolar proteinosis. Am Rev Respir Dis 1991; 144 (06) 1330-1332
  • 68 Maygarden SJ, Iacocca MV, Funkhouser WK, Novotny DB. Pulmonary alveolar proteinosis: a spectrum of cytologic, histochemical, and ultrastructural findings in bronchoalveolar lavage fluid. Diagn Cytopathol 2001; 24 (06) 389-395
  • 69 Honda Y, Kuroki Y, Matsuura E. , et al. Pulmonary surfactant protein D in sera and bronchoalveolar lavage fluids. Am J Respir Crit Care Med 1995; 152 (6 Pt 1): 1860-1866
  • 70 McCarthy C, Kokosi M, Bonella F. Shaping the future of an ultra-rare disease: unmet needs in the diagnosis and treatment of pulmonary alveolar proteinosis. Curr Opin Pulm Med 2019; 25 (05) 450-458
  • 71 Uchida K, Nakata K, Carey B. , et al. Standardized serum GM-CSF autoantibody testing for the routine clinical diagnosis of autoimmune pulmonary alveolar proteinosis. J Immunol Methods 2014; 402 (1-2): 57-70
  • 72 McCarthy C, Carey B, Trapnell BC. Blood testing for differential diagnosis of pulmonary alveolar proteinosis syndrome. Chest 2019; 155 (02) 450-452
  • 73 Ito M, Nakagome K, Ohta H. , et al. Elderly-onset hereditary pulmonary alveolar proteinosis and its cytokine profile. BMC Pulm Med 2017; 17 (01) 40
  • 74 Carey B, Heald C, Chalk C, Suzuki T, Uchida K, Trapnell BC. Use of serum GM-CSF for diagnosis of patients with hereditary pulmonary alveolar proteinosis. Am J Respir Crit Care Med 2013; 187: A850
  • 75 Kusakabe Y, Uchida K, Hiruma T. , et al. A standardized blood test for the routine clinical diagnosis of impaired GM-CSF signaling using flow cytometry. J Immunol Methods 2014; 413: 1-11
  • 76 McCarthy C, Carey B, Trapnell BC. Blood testing in the diagnosis of pulmonary alveolar proteinosis. Lancet Respir Med 2018; 6 (11) e54
  • 77 Punatar AD, Kusne S, Blair JE, Seville MT, Vikram HR. Opportunistic infections in patients with pulmonary alveolar proteinosis. J Infect 2012; 65 (02) 173-179
  • 78 Ono M, Saito R, Tominaga J, Okada Y, Ohkouchi S, Takemura T. Pathological features of explant lungs with fibrosis in autoimmune pulmonary alveolar proteinosis. Respirol Case Rep 2017; 5 (05) e00255
  • 79 Akira M, Inoue Y, Arai T. , et al; Osaka Respiratory Diseases Symposia Group. Pulmonary fibrosis on high-resolution CT of patients with pulmonary alveolar proteinosis. AJR Am J Roentgenol 2016; 207 (03) 544-551
  • 80 Sha J, Langton D. Role of granulocyte-macrophage colony-stimulating factor in pulmonary fibrosis following pulmonary alveolar proteinosis. Respirol Case Rep 2016; 4 (04) e00159
  • 81 Agarwal PP, Seely JM, Perkins DG, Matzinger FR, Alikhan Q. Pulmonary alveolar proteinosis and end-stage pulmonary fibrosis: a rare association. J Thorac Imaging 2005; 20 (03) 242-244
  • 82 Ben-Abraham R, Greenfeld A, Rozenman J, Ben-Dov I. Pulmonary alveolar proteinosis: step-by-step perioperative care of whole lung lavage procedure. Heart Lung 2002; 31 (01) 43-49
  • 83 Wasserman K, Blank N, Fletcher G. Lung lavage (alveolar washing) in alveolar proteinosis. Am J Med 1968; 44 (04) 611-617
  • 84 Beccaria M, Luisetti M, Rodi G. , et al. Long-term durable benefit after whole lung lavage in pulmonary alveolar proteinosis. Eur Respir J 2004; 23 (04) 526-531
  • 85 Campo I, Luisetti M, Griese M. , et al; WLL International Study Group. Whole lung lavage therapy for pulmonary alveolar proteinosis: a global survey of current practices and procedures. Orphanet J Rare Dis 2016; 11 (01) 115
  • 86 Campo I, Luisetti M, Griese M. , et al; WLL International Study Group. A global survey on whole lung lavage in pulmonary alveolar proteinosis. Chest 2016; 150 (01) 251-253
  • 87 Selecky PA, Wasserman K, Benfield JR, Lippmann M. The clinical and physiological effect of whole-lung lavage in pulmonary alveolar proteinosis: a ten-year experience. Ann Thorac Surg 1977; 24 (05) 451-461
  • 88 Rogers RM, Levin DC, Gray BA, Moseley Jr LW. Physiologic effects of bronchopulmonary lavage in alveolar proteinosis. Am Rev Respir Dis 1978; 118 (02) 255-264
  • 89 Cheng SL, Chang HT, Lau HP, Lee LN, Yang PC. Pulmonary alveolar proteinosis: treatment by bronchofiberscopic lobar lavage. Chest 2002; 122 (04) 1480-1485
  • 90 van der Kleij AJ, Peper JA, Biervliet JD, Bakker DJ, Roos CM, Jansen HM. Whole lung lavage under hyperbaric conditions: 2. Monitoring tissue oxygenation. Adv Exp Med Biol 1992; 317: 121-124
  • 91 Cohen ES, Elpern E, Silver MR. Pulmonary alveolar proteinosis causing severe hypoxemic respiratory failure treated with sequential whole-lung lavage utilizing venovenous extracorporeal membrane oxygenation: a case report and review. Chest 2001; 120 (03) 1024-1026
  • 92 Seymour JF, Dunn AR, Vincent JM, Presneill JJ, Pain MC. Efficacy of granulocyte-macrophage colony-stimulating factor in acquired alveolar proteinosis. N Engl J Med 1996; 335 (25) 1924-1925
  • 93 Seymour JF, Presneill JJ, Schoch OD. , et al. Therapeutic efficacy of granulocyte-macrophage colony-stimulating factor in patients with idiopathic acquired alveolar proteinosis. Am J Respir Crit Care Med 2001; 163 (02) 524-531
  • 94 Venkateshiah SB, Yan TD, Bonfield TL. , et al. An open-label trial of granulocyte macrophage colony stimulating factor therapy for moderate symptomatic pulmonary alveolar proteinosis. Chest 2006; 130 (01) 227-237
  • 95 Tazawa R, Ueda T, Abe M. , et al. Inhaled GM-CSF for pulmonary alveolar proteinosis. N Engl J Med 2019; 381 (10) 923-932
  • 96 Efficacy and Safety of Inhaled Molgramostim (rhGM-CSF) in Autoimmune Pulmonary Alveolar Proteinosis (aPAP) (IMPALA). US National Library of Medicine, 2016. 2019 . Available at: https://clinicaltrials.gov/ct2/show/NCT02702180 . Access date: October 6, 2019
  • 97 Tazawa R, Trapnell BC, Inoue Y. , et al. Inhaled granulocyte/macrophage-colony stimulating factor as therapy for pulmonary alveolar proteinosis. Am J Respir Crit Care Med 2010; 181 (12) 1345-1354
  • 98 Ohkouchi S, Akasaka K, Ichiwata T. , et al. Sequential granulocyte-macrophage colony-stimulating factor inhalation after whole-lung lavage for pulmonary alveolar proteinosis. A report of five intractable cases. Ann Am Thorac Soc 2017; 14 (08) 1298-1304
  • 99 Kavuru MS, Bonfield TL, Thomassen MJ. Plasmapheresis, GM-CSF, and alveolar proteinosis. Am J Respir Crit Care Med 2003; 167 (07) 1036 , author reply 1036–1037
  • 100 Akasaka K, Tanaka T, Kitamura N. , et al. Outcome of corticosteroid administration in autoimmune pulmonary alveolar proteinosis: a retrospective cohort study. BMC Pulm Med 2015; 15: 88
  • 101 Kavuru MS, Malur A, Marshall I. , et al. An open-label trial of rituximab therapy in pulmonary alveolar proteinosis. Eur Respir J 2011; 38 (06) 1361-1367
  • 102 Amital A, Dux S, Shitrit D, Shpilberg O, Kramer MR. Therapeutic effectiveness of rituximab in a patient with unresponsive autoimmune pulmonary alveolar proteinosis. Thorax 2010; 65 (11) 1025-1026
  • 103 Borie R, Debray MP, Laine C, Aubier M, Crestani B. Rituximab therapy in autoimmune pulmonary alveolar proteinosis. Eur Respir J 2009; 33 (06) 1503-1506
  • 104 Malur A, Kavuru MS, Marshall I. , et al. Rituximab therapy in pulmonary alveolar proteinosis improves alveolar macrophage lipid homeostasis. Respir Res 2012; 13: 46
  • 105 Soyez B, Borie R, Menard C. , et al. Rituximab for auto-immune alveolar proteinosis, a real life cohort study. Respir Res 2018; 19 (01) 74
  • 106 McCarthy C, Lee E, Bridges JP. , et al. Statin as a novel pharmacotherapy of pulmonary alveolar proteinosis. Nat Commun 2018; 9 (01) 3127
  • 107 Sallese A, Suzuki T, McCarthy C. , et al. Targeting cholesterol homeostasis in lung diseases. Sci Rep 2017; 7 (01) 10211
  • 108 Pioglitazone Therapy of Autoimmune Pulmonary Alveolar Proteinosis Autoimmune Pulmonary Alveolar Proteinosis (PioPAP). 2017 . Accessed January 7, 2018. https://clinicaltrials.gov/ct2/show/NCT03231033
  • 109 Ishii H, Seymour JF, Tazawa R. , et al. Secondary pulmonary alveolar proteinosis complicating myelodysplastic syndrome results in worsening of prognosis: a retrospective cohort study in Japan. BMC Pulm Med 2014; 14: 37
  • 110 Cuellar-Rodriguez J, Gea-Banacloche J, Freeman AF. , et al. Successful allogeneic hematopoietic stem cell transplantation for GATA2 deficiency. Blood 2011; 118 (13) 3715-3720
  • 111 Numata A, Matsuishi E, Koyanagi K. , et al. Successful therapy with whole-lung lavage and autologous peripheral blood stem cell transplantation for pulmonary alveolar proteinosis complicating acute myelogenous leukemia. Am J Hematol 2006; 81 (02) 107-109
  • 112 Fukuno K, Tomonari A, Tsukada N. , et al. Successful cord blood transplantation for myelodysplastic syndrome resulting in resolution of pulmonary alveolar proteinosis. Bone Marrow Transplant 2006; 38 (08) 581-582
  • 113 Tholouli E, Sturgess K, Dickinson RE. , et al. In vivo T-depleted reduced-intensity transplantation for GATA2-related immune dysfunction. Blood 2018; 131 (12) 1383-1387
  • 114 Tanaka-Kubota M, Shinozaki K, Miyamoto S. , et al. Hematopoietic stem cell transplantation for pulmonary alveolar proteinosis associated with primary immunodeficiency disease. Int J Hematol 2018; 107 (05) 610-614
  • 115 Shima K, Suzuki T, Arumugam P. , et al. Pulmonary macrophage transplantation therapy in Csf2ra gene-ablated mice: a novel model of hereditary pulmonary alveolar proteinosis in children. Am J Respir Crit Care Med 2017; 195: A4857
  • 116 Shima K, Arumugam P, Ma Y. , et al. Development and validation of Csf2ra gene-deficient mice as a clinically relevant model of children with hereditary pulmonary alveolar ProteINOSis. Am J Respir Crit Care Med 2017; 195: A4837
  • 117 Kleff V, Sorg UR, Bury C. , et al. Gene therapy of beta(c)-deficient pulmonary alveolar proteinosis (beta(c)-PAP): studies in a murine in vivo model. Mol Ther 2008; 16 (04) 757-764
  • 118 Frémond ML, Hadchouel A, Schweitzer C. , et al. Successful haematopoietic stem cell transplantation in a case of pulmonary alveolar proteinosis due to GM-CSF receptor deficiency. Thorax 2018; 73 (06) 590-592
  • 119 Suzuki T, Arumugam P, Sakagami T. , et al. Pulmonary macrophage transplantation therapy. Nature 2014; 514 (7523): 450-454
  • 120 Arumugam P, Suzuki T, Shima K. , et al. Long-term safety and efficacy of gene-pulmonary macrophage transplantation therapy of PAP in Csf2ra−/− mice. Mol Ther 2019; 27 (09) 1597-1611
  • 121 Suzuki T, Mayhew C, Sallese A. , et al. Use of induced pluripotent stem cells to recapitulate pulmonary alveolar proteinosis pathogenesis. Am J Respir Crit Care Med 2014; 189 (02) 183-193
  • 122 Lachmann N, Happle C, Ackermann M. , et al. Gene correction of human induced pluripotent stem cells repairs the cellular phenotype in pulmonary alveolar proteinosis. Am J Respir Crit Care Med 2014; 189 (02) 167-182
  • 123 Sui X, Du Q, Xu KF. , et al. Quantitative assessment of pulmonary alveolar proteinosis (PAP) with ultra-dose CT and correlation with pulmonary function tests (PFTs). PLoS One 2017; 12 (03) e0172958
  • 124 Tokura S, Akira M, Okuma T. , et al. A semiquantitative computed tomographic grading system for evaluating therapeutic response in pulmonary alveolar proteinosis. Ann Am Thorac Soc 2017; 14 (09) 1403-1411
  • 125 Jacob J, Bartholmai BJ, Rajagopalan S. , et al. Predicting outcomes in idiopathic pulmonary fibrosis using automated computed tomographic analysis. Am J Respir Crit Care Med 2018; 198 (06) 767-776
  • 126 Zavaletta VA, Bartholmai BJ, Robb RA. High resolution multidetector CT-aided tissue analysis and quantification of lung fibrosis. Acad Radiol 2007; 14 (07) 772-787
  • 127 McCarthy C, Bartholmai BJ, Woods JC, McCormack FX, Trapnell BC. Automated parenchymal pattern analysis of treatment responses in pulmonary alveolar proteinosis. Am J Respir Crit Care Med 2019; 199 (09) 1151-1152