Dtsch Med Wochenschr 2015; 140(01): e7-e13
DOI: 10.1055/s-0040-100423
Fachwissen
Originalarbeit
© Georg Thieme Verlag KG Stuttgart · New York

Hoch- versus moderat-intensive Laufbelastung – Einfluss auf kardio-metabolische Risikogrößen bei untrainierten Männern

Die randomisierte, kontrollierte RUSH-StudieHigh versus moderate intense running exercise - effects on cardiometabolic risk-factors in untrained males - the randomized controlled RUSH Study
Wolfgang Kemmler
1   Institut für Medizinische Physik, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU)
,
M Lell
2   Institut für Radiologie, FAU
,
M Scharf
2   Institut für Radiologie, FAU
,
L Fraunberger
3   Institut für Radiologie, FAU
,
S von Stengel
1   Institut für Medizinische Physik, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU)
› Author Affiliations
Further Information

Publication History

Publication Date:
12 January 2015 (online)

Zusammenfassung

Hintergrund und Fragestellung | Hochintensives Intervalltraining (HIIT) findet im Breiten- und Gesundheitssport zunehmend Anwendung. Ziel der Untersuchung war es, den Einfluss eines 16-wöchigen HIIT- vs. eines moderat-intensiven (Dauer-)Lauftrainings (MICE) auf kardiometabolische Risikofaktoren bei untrainierten Männern zu evaluieren.

Patienten und Methodik | 81 untrainierte, gesunde Männer zwischen 30–50 Jahren (BMI: 27,2 ± 3,7 kg/m2) wurden randomisiert einer HIIT- (n=40) oder einer Warte-/Kontrollgruppe (n=41) mit nachfolgender MICE-Laufintervention zugeteilt. Trainingsinhalte des HIIT waren (Intervall-)Belastung zwischen 90 s und 12 min an und über der anaeroben Schwelle (≈ 80–100% maximale Herzfrequenz [HFmax]). Im MICE-Training wurden (Dauer-)Belastungen im Bereich ≈ 60–82,5% Hfmax durchgeführt. Die Trainingsprotokolle wurden bezüglich des Gesamt-Energieverbrauchs angeglichen. Studienendpunkte waren kardiorespiratorische Fitness (VO2max), linksventrikulärer Massenindex (LVMI), Metabolisches-Syndrom-Z-Score (MetS-Z-Score), Intima-Media-Dicke (IMT) und Körperzusammensetzung.

Ergebnisse | Der mittels MRT erfasste LVMI erhöhte sich bei signifikant günstigeren Veränderungen in der HIIT-Gruppe (p=0,005) in beiden Gruppen signifikant (HIIT: 8,5 ± 5,4 %, p=0,001 vs. MICE: 5,3 ± 4,0%, p=0,001). Die Veränderung der VO2max der HIIT-Gruppe (14,7 ± 9,3%, p=0,001) unterschied sich signifikant (p=0,002) von der der MICE-Gruppe (7,9 ± 7,4%, p=0,001). Der MetS-Z-Score (HIIT: -2,06 ± 1,31, p=0,001 vs. MICE: -1,60 ± 1,77, p=0,001) zeigte wie auch die IMT (4,6 ± 5,9%, p=0,011 vs. 4,4 ± 8,1%, p=0,019) keine signifikanten Unterschiede zwischen den Trainingsgruppen. Das Körperfett (-4,9 ± 9,0 %, p=0,010 vs. -9,5 ± 9,4%, p=0,001) reduzierte sich in der MICE-Gruppe signifikant deutlicher (p=0,034), allerdings nahm die fettfreie Körpermasse in der MICE-Gruppe signifikant (p=0,008) stärker ab (0,5 ± 2,3%, p=0,381 vs. -1,3 ± 2,0%, p=0,003).

Folgerung | Bei gleichem Energieumsatz scheint HIIT zumindest tendenziell günstigere Effekte auf kardiometabolische Gesundheitsgrößen zu haben als ein moderat-intensives Training nach der traditionellen Dauermethode.

Abstract

Introduction | The philosophy on how to improve cardiometabolic risk factors most efficiently by endurance exercise is still controversial. To determine the effect of high-intensity (interval) training (HI[I]T) vs. moderate-intensity continuous exercise (MICE) training on cardiometabolic risk factors we conducted a 16-week crossover randomized controlled trial.

Methods | 81 healthy untrained middle aged men were randomly assigned to a HI(I)T-group and a control-group that started the MICE running program after their control status. HI(I)T consisted of running exercise around or above the individual anaerobic threshold (≈ 80– 100 % HRmax); MICE focused on continuous running exercise at ≈ 65–77.5 % HRmax. Both protocols were comparable with respect to energy consumption. Study endpoints were cardiorespiratory fitness (VO2max), left ventricular mass index (LVMI), metabolic syndrome Z-score (MetS-Z-score), intima-media-thickness (IMT) and body composition.

Results | VO2max-changes in this overweighed male cohort significantly (p=0.002) differ between HIIT (14.7 ± 9.3 %, p=0.001) and MICE (7.9 ± 7.4 %,p=0.001). LVMI, as determined via magnetic resonance imaging, significantly increased in both exercise groups (HIIT: 8.5 ± 5.4 %, p=0.001 vs. MICE: 5.3 ± 4.0 %, p=0.001), however the change was significantly more pronounced (p=0.005) in the HIIT-group. MetS-Z-score (HIIT: -2.06 ± 1.31, p=0.001 vs. MICE: -1.60 ± 1.77, p=0.001) and IMT (4.6 ± 5.9 % p=0.011 vs. 4.4 ± 8.1 %, p=0.019) did not show significant group-differences. Reductions of fat mass (-4.9 ± 9.0 %, p=0.010 vs. -9.5 ± 9.4, p=0.001) were significantly higher among the MICE-participants (p=0.034), however, the same was true (p=0.008) for lean body mass (0.5 ± 2.3 %, p=0.381 vs. -1.3 ± 2.0 %, p=0.003).

Conclusion | In summary high-intensity interval training tends to impact cardiometabolic health more favorable compared with a moderate-intensity continuous endurance exercise protocol.

Supporting Information

 
  • Literaturverzeichnis

  • 1 ACSM. Metabolic calculations. In: Whaley MH, ed. ACSM’s guidelines of testing and prescription. Philadelphia: LWW; 2006: 286-299
  • 2 Arena R, Myers J, Forman DE et al. Should high-intensity-aerobic interval training become the clinical standard in heart failure?. Heart Fail Rev 2013; 18: 95-105
  • 3 Bartlett JD, Close GL, MacLaren DP et al. High-intensity interval running is perceived to be more enjoyable than moderate-intensity continuous exercise: implications for exercise adherence. J Sports Sci 2011; 29: 547-553
  • 4 Bouzas-Mosquera A, Broullon FJ, Alvarez-Garcia N et al. Association of left ventricular mass with all-cause mortality, myocardial infarction and stroke. PLoS One 2012; 7: e45570
  • 5 Buchheit M, Laursen PB. High-Intensity Interval Training, Solutions to the Programming Puzzle: Part II: Anaerobic Energy, Neuromuscular Load and Practical Applications. Sports Med 2013; 43: 927-954
  • 6 Dalleck L, Dalleck A. The ACSM Exercise Intensity Guidelines for Cardiorespiratory Fitness: Why The Misuse?. JEPonline 2008; 11: 1-11
  • 7 de Morton NA. The PEDro scale is a valid measure of the methodological quality of clinical trials: a demographic study. Aust J Physiother 2009; 55: 129-133
  • 8 Dickhuth HH, Huonker M, Münzel T et al. Individual anaerobic threshold for evaluation of competitive athletes and patients with left ventricular dysfunction. In: Bachl TG, Löllgen H, eds. Advances in Ergometry. Berlin, Heidelberg, New York: Sringer; 1991: 173-179
  • 9 Earnest CP, Lupo M, Thibodaux J et al. Interval training in men at risk for insulin resistance. Int J Sports Med 2013; 34: 355-363
  • 10 Guiraud T, Nigam A, Gremeaux V et al. High-intensity interval training in cardiac rehabilitation. Sports Med 2012; 42: 587-605
  • 11 Hansen D, Dendale P, van Loon LJ et al. The impact of training modalities on the clinical benefits of exercise intervention in patients with cardiovascular disease risk or type 2 diabetes mellitus. Sports Med 2010; 40: 921-940
  • 12 Haykowsky MJ, Timmons MP, Kruger C et al. Meta-analysis of aerobic interval training on exercise capacity and systolic function in patients with heart failure and reduced ejection fractions. Am J Cardiol 2013; 111: 1466-1469
  • 13 Helgerud J, Storen O, Hoff J. Are there differences in running economy at different velocities for well-trained distance runners?. Eur J Appl Physiol 2010; 108: 1099-1105
  • 14 Hurst RT, Ng DW, Kendall C et al. Clinical use of carotid intima-media thickness: review of the literature. J Am Soc Echocardiogr 2007; 20: 907-914
  • 15 Hwang CL, Wu YT, Chou CH. Effect of aerobic interval training on exercise capacity and metabolic risk factors in people with cardiometabolic disorders: a meta-analysis. J Cardiopulm Rehabil Prev 2011; 31: 378-385
  • 16 Johnson JL, Slentz CA, Houmard JA et al. Exercise training amount and intensity effects on metabolic syndrome (from Studies of a Targeted Risk Reduction Intervention through Defined Exercise). Am J Cardiol 2007; 100: 1759-1766
  • 17 Kemi OJ, Wisloff U. High-intensity aerobic exercise training improves the heart in health and disease. J Cardiopulm Rehabil Prev 2010; 30: 2-11
  • 18 Kemmler W, Scharf M, Lell M et al. High versus Moderate Intensity Running Exercise to Impact Cardiometabolic Risk Factors: The Randomized Controlled RUSH-Study. Biomed Res Int 2014; 2014: 843 095
  • 19 Kemmler W, Weineck J, Kalender WA et al. The effect of habitual physical activity, non-athletic exercise, muscle strength, and VO2max on bone mineral density is rather low in early postmenopausal osteopenic women. J Musculoskelet Neuronal Interact 2004; 4: 325-334
  • 20 Kodama S, Saito K, Tanaka S et al. Cardiorespiratory fitness as a quantitative predictor of all-cause mortality and cardiovascular events in healthy men and women: a meta-analysis. JAMA 2009; 301: 2024-2035
  • 21 Kodama S, Tanaka S, Saito K et al. Effect of aerobic exercise training on serum levels of high-density lipoprotein cholesterol: a meta-analysis. Arch Intern Med 2007; 167: 999-1008
  • 22 Matsuo T, Saotome K, Seino S et al. Effects of a low-volume aerobic-type interval exercise on v o2max and cardiac mass. Med Sci Sports Exerc 2014; 46: 42-50
  • 23 Meyer K, Samek L, Schwaibold M et al. Physical responses to different modes of interval exercise in patients with chronic heart failure – application to exercise training. Eur Heart J 1996; 17: 1040-1047
  • 24 NCEP. Expert Panel on Detection, Evaluation, And Treatment of High Blood Cholesterol In Adults (Adult Treatment Panel III). JAMA 2001; 285: 2486-2497
  • 25 O’Donovan G, Owen A, Bird SR et al. Changes in cardiorespiratory fitness and coronary heart disease risk factors following 24 wk of moderate- or high-intensity exercise of equal energy cost. J Appl Physiol 2005; 98: 1619-1625
  • 26 Reindell H, Adam K, Braecklein H et al. Das Intervalltraining. In: Barth JA, Hrsg. Wissenschaftliche Schriftenreihe des Deutschen Sportbundes. München: Deutscher Sportbund; 1962
  • 27 Rognmo O, Moholdt T, Bakken H et al. Cardiovascular risk of high- versus moderate-intensity aerobic exercise in coronary heart disease patients. Circulation 2012; 126: 1436-1440
  • 28 Scharf M, Brem MH, Wilhelm M et al. Atrial and ventricular functional and structural adaptations of the heart in elite triathletes assessed with cardiac MR imaging. Radiology 2010; 257: 71-79
  • 29 Stein JH, Korcarz CE, Hurst RT et al. Use of carotid ultrasound to identify subclinical vascular disease and evaluate cardiovascular disease risk. J Am Soc Echocardiogr 2008; 21: 93-111
  • 30 Tjonna AE, Lee SJ, Rognmo O et al. Aerobic interval training versus continuous moderate exercise as a treatment for the metabolic syndrome: a pilot study. Circulation 2008; 118: 346-354
  • 31 Wallman K, Plant LA, Rakimov B et al. The effects of two modes of exercise on aerobic fitness and fat mass in an overweight population. Res Sports Med 2009; 17: 156-170
  • 32 Weineck J. Optimales Training. Erlangen: Spitta; 2007
  • 33 Weston KS, Wisloff U, Coombes JS. High-intensity interval training in patients with lifestyle-induced cardiometabolic disease: a systematic review and meta-analysis. Br J Sports Med 2014; 48: 1227-1234