Semin Thromb Hemost 2022; 48(03): 277-287
DOI: 10.1055/s-0041-1741569
Review Article

Neurocoagulation from a Mechanistic Point of View in the Central Nervous System

Efrat Shavit-Stein
1   Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan, Israel
2   Department of Neurology and Neurosurgery, Sackler School of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
,
Shani Berkowitz
1   Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan, Israel
2   Department of Neurology and Neurosurgery, Sackler School of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
,
Shany Guly Gofrit
1   Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan, Israel
,
Keren Altman
1   Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan, Israel
,
Nitai Weinberg
1   Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan, Israel
,
Nicola Maggio
1   Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan, Israel
2   Department of Neurology and Neurosurgery, Sackler School of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
3   Talpiot Medical Leadership Program, The Chaim Sheba Medical Center, Ramat Gan, Israel
› Author Affiliations

Abstract

Coagulation mechanisms are critical for maintaining homeostasis in the central nervous system (CNS). Thrombin, an important player of the coagulation cascade, activates protease activator receptors (PARs), members of the G-protein coupled receptor family. PAR1 is located on neurons and glia. Following thrombin activation, PAR1 signals through the extracellular signal-regulated kinase pathway, causing alterations in neuronal glutamate release and astrocytic morphological changes. Similarly, the anticoagulation factor activated protein C (aPC) can cleave PAR1, following interaction with the endothelial protein C receptor. Both thrombin and aPC are expressed on endothelial cells and pericytes in the blood-brain barrier (BBB). Thrombin-induced PAR1 activation increases cytosolic Ca2+ concentration in brain vessels, resulting in nitric oxide release and increasing F-actin stress fibers, damaging BBB integrity. aPC also induces PAR1 activation and preserves BBB vascular integrity via coupling to sphingosine 1 phosphate receptors. Thrombin-induced PAR1 overactivation and BBB disruption are evident in CNS pathologies. During epileptic seizures, BBB disruption promotes thrombin penetration. Thrombin induces PAR1 activation and potentiates N-methyl-D-aspartate receptors, inducing glutamate-mediated hyperexcitability. Specific PAR1 inhibition decreases status epilepticus severity in vivo. In stroke, the elevation of brain thrombin levels further compromises BBB integrity, with direct parenchymal damage, while systemic factor Xa inhibition improves neurological outcomes. In multiple sclerosis (MS), brain thrombin inhibitory capacity correlates with clinical presentation. Both thrombin inhibition by hirudin and the use of recombinant aPC improve disease severity in an MS animal model. This review presents the mechanisms underlying the effects of coagulation on the physiology and pathophysiology of the CNS.



Publication History

Article published online:
20 January 2022

© 2022. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Green D. Coagulation cascade. In: Hemodialysis International. Vol. 10. Hoboken, New Jersey: John Wiley & Sons, Ltd; 2006: S2-S4
  • 2 Mackman N. Role of tissue factor in hemostasis, thrombosis, and vascular development. Arterioscler Thromb Vasc Biol 2004; 24 (06) 1015-1022
  • 3 Monroe DM, Hoffman M, Roberts HR. Platelets and thrombin generation. Arterioscler Thromb Vasc Biol 2002; 22 (09) 1381-1389
  • 4 Butenas S, Orfeo T, Mann KG. Tissue factor in coagulation: Which? Where? When?. Arterioscler Thromb Vasc Biol 2009; 29 (12) 1989-1996
  • 5 Tanaka KA, Key NS, Levy JH. Blood coagulation: hemostasis and thrombin regulation. Anesth Analg 2009; 108 (05) 1433-1446
  • 6 Krishnaswamy S. The transition of prothrombin to thrombin. J Thromb Haemost 2013; 11 (Suppl. 01) 265-276
  • 7 Vu T-KH, Hung DT, Wheaton VI, Coughlin SR. Molecular cloning of a functional thrombin receptor reveals a novel proteolytic mechanism of receptor activation. Cell 1991; 64 (06) 1057-1068
  • 8 Gieseler F, Ungefroren H, Settmacher U, Hollenberg MD, Kaufmann R. Proteinase-activated receptors (PARs) - focus on receptor-receptor-interactions and their physiological and pathophysiological impact. Cell Commun Signal 2013; 11 (01) 86
  • 9 Coughlin SR. Protease-activated receptors in hemostasis, thrombosis and vascular biology. J Thromb Haemost 2005; 3 (08) 1800-1814
  • 10 Wang H, Ubl JJ, Stricker R, Reiser G. Thrombin (PAR-1)-induced proliferation in astrocytes via MAPK involves multiple signaling pathways. Am J Physiol Cell Physiol 2002; 283 (5 52–5): 1351-1364
  • 11 Chen C-H, Paing MM, Trejo J. Termination of protease-activated receptor-1 signaling by β-arrestins is independent of receptor phosphorylation. J Biol Chem 2004; 279 (11) 10020-10031
  • 12 Daneman R, Prat A. The blood-brain barrier. Cold Spring Harb Perspect Biol 2015; 7 (01) a020412
  • 13 Fisher MJ. Brain regulation of thrombosis and hemostasis: from theory to practice. Stroke 2013; 44 (11) 3275-3285
  • 14 Kadry H, Noorani B, Cucullo L. A blood-brain barrier overview on structure, function, impairment, and biomarkers of integrity. Fluids Barriers CNS 2020; 17 (01) 69
  • 15 Noorbakhsh F, Power C. Proteinase-activated receptor expression and function in the brain. Drug Development Research 2003; 60: 51-57
  • 16 Arai T, Miklossy J, Klegeris A, Guo JP, McGeer PL. Thrombin and prothrombin are expressed by neurons and glial cells and accumulate in neurofibrillary tangles in Alzheimer disease brain. J Neuropathol Exp Neurol 2006; 65 (01) 19-25
  • 17 Pompili E, Fabrizi C, Fornai F, Fumagalli L. Role of the protease-activated receptor 1 in regulating the function of glial cells within central and peripheral nervous system. J Neural Transm (Vienna) 2019; 126 (10) 1259-1271
  • 18 Shavit E, Beilin O, Korczyn AD. et al. Thrombin receptor PAR-1 on myelin at the node of Ranvier: a new anatomy and physiology of conduction block. Brain 2008; 131 (Pt 4): 1113-1122
  • 19 Coughlin SR. Thrombin signalling and protease-activated receptors. Nature 2000; 407 (6801): 258-264
  • 20 Junge CE, Lee CJ, Hubbard KB. et al. Protease-activated receptor-1 in human brain: localization and functional expression in astrocytes. Exp Neurol 2004; 188 (01) 94-103
  • 21 Eddleston M, de la Torre JC, Oldstone MBA, Loskutoff DJ, Edgington TS, Mackman N. Astrocytes are the primary source of tissue factor in the murine central nervous system. A role for astrocytes in cerebral hemostasis. J Clin Invest 1993; 92 (01) 349-358
  • 22 Krenzlin H, Lorenz V, Danckwardt S, Kempski O, Alessandri B. The importance of thrombin in cerebral injury and disease. Int J Mol Sci 2016; 17 (01) E84
  • 23 Shlobin NA, Har-Even M, Itsekson-Hayosh Z, Harnof S, Pick CG. Role of thrombin in central nervous system injury and disease. Biomolecules 2021; 11 (04) 1-19
  • 24 Wang H, Reiser G. Thrombin signaling in the brain: the role of protease-activated receptors. Biol Chem 2003; 384 (02) 193-202
  • 25 Gofrit SG, Shavit-Stein E. The neuro-glial coagulonome: the thrombin receptor and coagulation pathways as major players in neurological diseases. Neural Regen Res 2019; 14 (12) 2043-2053
  • 26 Sweeney AM, Fleming KE, McCauley JP. et al. PAR1 activation induces rapid changes in glutamate uptake and astrocyte morphology. Sci Rep 2017; 7 (01) 43606
  • 27 Noorbakhsh F, Vergnolle N, Hollenberg MD, Power C. Proteinase-activated receptors in the nervous system. Nat Rev Neurosci 2003; 4 (12) 981-990
  • 28 Deschepper CF, Bigornia V, Berens ME, Lapointe MC. Production of thrombin and antithrombin III by brain and astroglial cell cultures. Brain Res Mol Brain Res 1991; 11 (3-4): 355-358
  • 29 De Luca C, Virtuoso A, Maggio N, Papa M. Neuro-coagulopathy: blood coagulation factors in central nervous system diseases. Int J Mol Sci 2017; 18 (10) E2128
  • 30 Willis Fox O, Preston RJS. Molecular basis of protease-activated receptor 1 signaling diversity. J Thromb Haemost 2020; 18 (01) 6-16
  • 31 Austin KM, Covic L, Kuliopulos A. Matrix metalloproteases and PAR1 activation. Blood 2013; 121 (03) 431-439
  • 32 Sebastiano M, Momi S, Falcinelli E, Bury L, Hoylaerts MF, Gresele P. A novel mechanism regulating human platelet activation by MMP-2-mediated PAR1 biased signaling. Blood 2017; 129 (07) 883-895
  • 33 Mosnier LO, Sinha RK, Burnier L, Bouwens EA, Griffin JH. Biased agonism of protease-activated receptor 1 by activated protein C caused by noncanonical cleavage at Arg46. Blood 2012; 120 (26) 5237-5246
  • 34 Kondreddy V, Pendurthi UR, Xu X, Griffin JH, Rao LVM. FVIIa (factor VIIa) induces biased cytoprotective signaling in mice through the cleavage of PAR (protease-activated receptor)-1 at canonical Arg41 (Arginine41) site. Arterioscler Thromb Vasc Biol 2020; 40 (05) 1275-1288
  • 35 Brailoiu E, Shipsky MM, Yan G, Abood ME, Brailoiu GC. Mechanisms of modulation of brain microvascular endothelial cells function by thrombin. Brain Res 2017; 1657: 167-175
  • 36 Dömötör E, Benzakour O, Griffin JH, Yule D, Fukudome K, Zlokovic BV. Activated protein C alters cytosolic calcium flux in human brain endothelium via binding to endothelial protein C receptor and activation of protease activated receptor-1. Blood 2003; 101 (12) 4797-4801
  • 37 Feistritzer C, Riewald M. Endothelial barrier protection by activated protein C through PAR1-dependent sphingosine 1-phosphate receptor-1 crossactivation. Blood 2005; 105 (08) 3178-3184
  • 38 Machida T, Dohgu S, Takata F. et al. Role of thrombin-PAR1-PKCθ/δ axis in brain pericytes in thrombin-induced MMP-9 production and blood-brain barrier dysfunction in vitro. Neuroscience 2017; 350: 146-157
  • 39 Gerzanich V, Kwon MS, Woo SK, Ivanov A, Simard JM. SUR1-TRPM4 channel activation and phasic secretion of MMP-9 induced by tPA in brain endothelial cells. PLoS One 2018; 13 (04) e0195526
  • 40 Stein ES, Itsekson-Hayosh Z, Aronovich A. et al. Thrombin induces ischemic LTP (iLTP): implications for synaptic plasticity in the acute phase of ischemic stroke. Sci Rep 2015; 5 (01) 7912
  • 41 Shavit-Stein E, Aronovich R, Sylantiev C, Gofrit SG, Chapman J, Dori A. The role of thrombin in the pathogenesis of diabetic neuropathy. PLoS One 2019; 14 (07) e0219453
  • 42 Vittal Rao H, Bihaqi SW, Iannucci J, Sen A, Grammas P. Thrombin signaling contributes to high glucose-induced injury of human brain microvascular endothelial cells. J Alzheimers Dis 2021; 79 (01) 211-224
  • 43 Dragoni S, Papageorgiou A, Araiz C, Greenwood J, Turowski P. Endothelial protease activated receptor 1 (PAR1) signalling is required for lymphocyte transmigration across brain microvascular endothelial cells. Cells 2020; 9 (12) E2723
  • 44 Cheng T, Liu D, Griffin JH. et al. Activated protein C blocks p53-mediated apoptosis in ischemic human brain endothelium and is neuroprotective. Nat Med 2003; 9 (03) 338-342
  • 45 Lee CJ, Mannaioni G, Yuan H, Woo DH, Gingrich MB, Traynelis SF. Astrocytic control of synaptic NMDA receptors. J Physiol 2007; 581 (Pt 3): 1057-1081
  • 46 Park H, Han K-S, Seo J. et al. Channel-mediated astrocytic glutamate modulates hippocampal synaptic plasticity by activating postsynaptic NMDA receptors. Mol Brain 2015; 8 (01) 7
  • 47 Gorbacheva L, Davidova O, Sokolova E. et al. Endothelial protein C receptor is expressed in rat cortical and hippocampal neurons and is necessary for protective effect of activated protein C at glutamate excitotoxicity. J Neurochem 2009; 111 (04) 967-975
  • 48 Guo H, Liu D, Gelbard H. et al. Activated protein C prevents neuronal apoptosis via protease activated receptors 1 and 3. Neuron 2004; 41 (04) 563-572
  • 49 Rajput PS, Lamb J, Kothari S. et al. Neuron-generated thrombin induces a protective astrocyte response via protease activated receptors. Glia 2020; 68 (02) 246-262
  • 50 Burda JE, Radulovic M, Yoon H, Scarisbrick IA. Critical role for PAR1 in kallikrein 6-mediated oligodendrogliopathy. Glia 2013; 61 (09) 1456-1470
  • 51 Yoon H, Choi C-I, Triplet EM. et al. Blocking the thrombin receptor promotes repair of demyelinated lesions in the adult brain. J Neurosci 2020; 40 (07) 1483-1500
  • 52 Pontecorvi P, Banki MA, Zampieri C. et al. Fibrinolysis protease receptors promote activation of astrocytes to express pro-inflammatory cytokines. J Neuroinflammation 2019; 16 (01) 257
  • 53 Cooke SF, Bliss TVP. Plasticity in the human central nervous system. Brain 2006; 129 (Pt 7): 1659-1673
  • 54 Kauer JA, Malenka RC. Synaptic plasticity and addiction. Nat Rev Neurosci 2007; 8 (11) 844-858
  • 55 Gingrich MB, Junge CE, Lyuboslavsky P, Traynelis SF. Potentiation of NMDA receptor function by the serine protease thrombin. J Neurosci 2000; 20 (12) 4582-4595
  • 56 Maggio N, Shavit E, Chapman J, Segal M. Thrombin induces long-term potentiation of reactivity to afferent stimulation and facilitates epileptic seizures in rat hippocampal slices: toward understanding the functional consequences of cerebrovascular insults. J Neurosci 2008; 28 (03) 732-736
  • 57 Maggio N, Cavaliere C, Papa M, Blatt I, Chapman J, Segal M. Thrombin regulation of synaptic transmission: implications for seizure onset. Neurobiol Dis 2013; 50 (01) 171-178
  • 58 Almonte AG, Hamill CE, Chhatwal JP. et al. Learning and memory deficits in mice lacking protease activated receptor-1. Neurobiol Learn Mem 2007; 88 (03) 295-304
  • 59 Mannaioni G, Orr AG, Hamill CE. et al. Plasmin potentiates synaptic N-methyl-D-aspartate receptor function in hippocampal neurons through activation of protease-activated receptor-1. J Biol Chem 2008; 283 (29) 20600-20611
  • 60 Hamill CE, Mannaioni G, Lyuboslavsky P, Sastre AA, Traynelis SF. Protease-activated receptor 1-dependent neuronal damage involves NMDA receptor function. Exp Neurol 2009; 217 (01) 136-146
  • 61 Han K-S, Mannaioni G, Hamill CE. et al. Activation of protease activated receptor 1 increases the excitability of the dentate granule neurons of hippocampus. Mol Brain 2011; 4 (01) 32
  • 62 Oh S-J, Han K-S, Park H. et al. Protease activated receptor 1-induced glutamate release in cultured astrocytes is mediated by Bestrophin-1 channel but not by vesicular exocytosis. Mol Brain 2012; 5 (01) 38
  • 63 Park H, Han K-S, Oh S-J. et al. High glutamate permeability and distal localization of Best1 channel in CA1 hippocampal astrocyte. Mol Brain 2013; 6 (01) 54
  • 64 Maggio N, Itsekson Z, Dominissini D. et al. Thrombin regulation of synaptic plasticity: implications for physiology and pathology. Exp Neurol 2013; 247: 595-604
  • 65 Maggio N, Itsekson Z, Ikenberg B. et al. The anticoagulant activated protein C (aPC) promotes metaplasticity in the hippocampus through an EPCR-PAR1-S1P1 receptors dependent mechanism. Hippocampus 2014; 24 (08) 1030-1038
  • 66 Crepel V, Hammond C, Chinestra P, Diabira D, Ben-Ari Y. A selective LTP of NMDA receptor-mediated currents induced by anoxia in CA1 hippocampal neurons. J Neurophysiol 1993; 70 (05) 2045-2055
  • 67 Hsu K-S, Huang C-C. Characterization of the anoxia-induced long-term synaptic potentiation in area CA1 of the rat hippocampus. Br J Pharmacol 1997; 122 (04) 671-681
  • 68 Calabresi P, Centonze D, Pisani A, Cupini L, Bernardi G. Synaptic plasticity in the ischaemic brain. Lancet Neurol 2003; 2 (10) 622-629
  • 69 Del Turco D, Deller T. Organotypic entorhino-hippocampal slice cultures–a tool to study the molecular and cellular regulation of axonal regeneration and collateral sprouting in vitro. Methods Mol Biol 2007; 399: 55-66
  • 70 Vlachos A, Becker D, Jedlicka P, Winkels R, Roeper J, Deller T. Entorhinal denervation induces homeostatic synaptic scaling of excitatory postsynapses of dentate granule cells in mouse organotypic slice cultures. PLoS One 2012; 7 (03) e32883
  • 71 Müller CM, Vlachos A, Deller T. Calcium homeostasis of acutely denervated and lesioned dentate gyrus in organotypic entorhino-hippocampal co-cultures. Cell Calcium 2010; 47 (03) 242-252
  • 72 Marder E, Goaillard J-M. Variability, compensation and homeostasis in neuron and network function. Nat Rev Neurosci 2006; 7 (07) 563-574
  • 73 Maffei A, Fontanini A. Network homeostasis: a matter of coordination. Curr Opin Neurobiol 2009; 19 (02) 168-173
  • 74 Turrigiano G. Homeostatic synaptic plasticity: local and global mechanisms for stabilizing neuronal function. Cold Spring Harb Perspect Biol 2012; 4 (01) a005736
  • 75 Vitureira N, Letellier M, Goda Y. Homeostatic synaptic plasticity: from single synapses to neural circuits. Curr Opin Neurobiol 2012; 22 (03) 516-521
  • 76 Becker D, Ikenberg B, Schiener S, Maggio N, Vlachos A. NMDA-receptor inhibition restores protease-activated receptor 1 (PAR1) mediated alterations in homeostatic synaptic plasticity of denervated mouse dentate granule cells. Neuropharmacology 2014; 86: 212-218
  • 77 Moshé SL, Perucca E, Ryvlin P, Tomson T. Epilepsy: new advances. Lancet 2015; 385 (9971): 884-898
  • 78 Fisher RS, Acevedo C, Arzimanoglou A. et al. ILAE official report: a practical clinical definition of epilepsy. Epilepsia 2014; 55 (04) 475-482
  • 79 Fisher RS, van Emde Boas W, Blume W. et al. Epileptic seizures and epilepsy: definitions proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE). Epilepsia 2005; 46 (04) 470-472
  • 80 Jiruska P, de Curtis M, Jefferys JGR, Schevon CA, Schiff SJ, Schindler K. Synchronization and desynchronization in epilepsy: controversies and hypotheses. J Physiol 2013; 591 (04) 787-797
  • 81 Delorenzo RJ, Sun DA, Deshpande LS. Cellular mechanisms underlying acquired epilepsy: the calcium hypothesis of the induction and maintenance of epilepsy. Pharmacol Ther 2005; 105 (03) 229-266
  • 82 van Vliet EA, Aronica E, Gorter JA. Blood-brain barrier dysfunction, seizures and epilepsy. Semin Cell Dev Biol 2015; 38: 26-34
  • 83 Friedman A, Heinemann U. Role of Blood-Brain Barrier Dysfunction in Epileptogenesis. In: Noebels JL, Avoli M, Rogawski MA, Olsen RW, Delgado-Escueta AV. eds. Jasper's Basic Mechanisms of the Epilepsies [Internet]. 4th ed.. Bethesda, MD: National Center for Biotechnology Information (US); 2012: 353-361
  • 84 Ben Shimon M, Lenz M, Ikenberg B. et al. Thrombin regulation of synaptic transmission and plasticity: implications for health and disease. Front Cell Neurosci 2015; 9 (APR): 151
  • 85 Altman K, Shavit-Stein E, Maggio N. Post stroke seizures and epilepsy: from proteases to maladaptive plasticity. Front Cell Neurosci 2019; 13 (September): 397
  • 86 Ben Shimon M, Shavit-Stein E, Altman K, Pick CG, Maggio N. Thrombin as key mediator of seizure development following traumatic brain injury. Front Pharmacol 2020; 10: 1532
  • 87 Isaev D, Lushnikova I, Lunko O. et al. Contribution of protease-activated receptor 1 in status epilepticus-induced epileptogenesis. Neurobiol Dis 2015; 78: 68-76
  • 88 Lenz M, Shimon MB, Benninger F. et al. Systemic thrombin inhibition ameliorates seizures in a mouse model of pilocarpine-induced status epilepticus. J Mol Med (Berl) 2019; 97 (11) 1567-1574
  • 89 Oby E, Janigro D. The blood-brain barrier and epilepsy. Epilepsia 2006; 47 (11) 1761-1774
  • 90 Marchi N, Granata T, Ghosh C, Janigro D. Blood-brain barrier dysfunction and epilepsy: pathophysiologic role and therapeutic approaches. Epilepsia 2012; 53 (11) 1877-1886
  • 91 Han H, Mann A, Ekstein D, Eyal S. Breaking bad: the structure and function of the blood-brain barrier in epilepsy. AAPS J 2017; 19 (04) 973-988
  • 92 Mindel E, Weiss R, Bushi D. et al. Increased brain plasmin levels following experimental ischemic stroke in male mice. J Neurosci Res 2021; 99 (03) 966-976
  • 93 Niego B, Medcalf RL. Plasmin-dependent modulation of the blood-brain barrier: a major consideration during tPA-induced thrombolysis?. J Cereb Blood Flow Metab 2014; 34 (08) 1283-1296
  • 94 Chen B, Friedman B, Whitney MA. et al. Thrombin activity associated with neuronal damage during acute focal ischemia. J Neurosci 2012; 32 (22) 7622-7631
  • 95 Bushi D, Chapman J, Katzav A. et al. Quantitative detection of thrombin activity in an ischemic stroke model. J Mol Neurosci 2013; 51 (03) 844-850
  • 96 Bushi D, Stein ES, Golderman V. et al. A linear temporal increase in thrombin activity and loss of its receptor in mouse brain following ischemic stroke. Front Neurol 2017; 8: 138
  • 97 Bushi D, Ben Shimon M, Shavit Stein E, Chapman J, Maggio N, Tanne D. Increased thrombin activity following reperfusion after ischemic stroke alters synaptic transmission in the hippocampus. J Neurochem 2015; 135 (06) 1140-1148
  • 98 Striggow F, Riek M, Rg Breder J, Henrich-Noack P, Reymann KG, Reiser G. The protease thrombin is an endogenous mediator of hippocampal neuroprotection against ischemia at low concentrations but causes degeneration at high concentrations. Proc Natl Acad Sci U S A 2000; 97 (05) 2264-2269
  • 99 Xi G, Reiser G, Keep RF. The role of thrombin and thrombin receptors in ischemic, hemorrhagic and traumatic brain injury: deleterious or protective?. J Neurochem 2003; 84 (01) 3-9
  • 100 Chen B, Cheng Q, Yang K, Lyden PD. Thrombin mediates severe neurovascular injury during ischemia. Stroke 2010; 41 (10) 2348-2352
  • 101 van Nieuw Amerongen GP, van Delft S, Vermeer MA, Collard JG, van Hinsbergh VW. Activation of RhoA by thrombin in endothelial hyperpermeability: role of Rho kinase and protein tyrosine kinases. Circ Res 2000; 87 (04) 335-340
  • 102 Donovan FM, Pike CJ, Cotman CW, Cunningham DD. Thrombin induces apoptosis in cultured neurons and astrocytes via a pathway requiring tyrosine kinase and RhoA activities. J Neurosci 1997; 17 (14) 5316-5326
  • 103 Fujimoto S, Katsuki H, Ohnishi M, Takagi M, Kume T, Akaike A. Thrombin induces striatal neurotoxicity depending on mitogen-activated protein kinase pathways in vivo. Neuroscience 2007; 144 (02) 694-701
  • 104 Wang J, Jin H, Hua Y, Keep RF, Xi G. Role of protease-activated receptor-1 in brain injury after experimental global cerebral ischemia. Stroke 2012; 43 (09) 2476-2482
  • 105 Rajput PS, Lyden PD, Chen B. et al. Protease activated receptor-1 mediates cytotoxicity during ischemia using in vivo and in vitro models. Neuroscience 2014; 281: 229-240
  • 106 Bushi D, Chapman J, Wohl A, Stein ES, Feingold E, Tanne D. Apixaban decreases brain thrombin activity in a male mouse model of acute ischemic stroke. J Neurosci Res 2018; 96 (08) 1406-1411
  • 107 Arneth B. Coevolution of the coagulation and immune systems. Inflamm Res 2019; 68 (02) 117-123
  • 108 Esmon CT, Xu J, Lupu F. Innate immunity and coagulation. J Thromb Haemost 2011; 9 (1 S): 182-188
  • 109 Hot A, Lenief V, Miossec P. Combination of IL-17 and TNFα induces a pro-inflammatory, pro-coagulant and pro-thrombotic phenotype in human endothelial cells. Ann Rheum Dis 2012; 71 (05) 768-776
  • 110 Kettenmann H, Hanisch UK, Noda M, Verkhratsky A. Physiology of microglia. Physiol Rev 2011; 91 (02) 461-553
  • 111 Möller T, Hanisch UK, Ransom BR. Thrombin-induced activation of cultured rodent microglia. J Neurochem 2000; 75 (04) 1539-1547
  • 112 Suo Z, Wu M, Ameenuddin S. et al. Participation of protease-activated receptor-1 in thrombin-induced microglial activation. J Neurochem 2002; 80 (04) 655-666
  • 113 Siao CJ, Tsirka SE. Tissue plasminogen activator mediates microglial activation via its finger domain through annexin II. J Neurosci 2002; 22 (09) 3352-3358
  • 114 Wallin MT, Culpepper WJ, Campbell JD. et al; US Multiple Sclerosis Prevalence Workgroup. The prevalence of MS in the United States: a population-based estimate using health claims data. Neurology 2019; 92 (10) e1029-e1040
  • 115 La Starza S, Ferraldeschi M, Buscarinu MC. et al. Genome-wide multiple sclerosis association data and coagulation. Front Neurol 2019; 10 (FEB): 95
  • 116 Ziliotto N, Lamberti N, Manfredini F. et al. Functional recovery in multiple sclerosis patients undergoing rehabilitation programs is associated with plasma levels of hemostasis inhibitors. Mult Scler Relat Disord 2020; 44: 102319
  • 117 Beilin O, Gurwitz D, Korczyn AD, Chapman J. Quantitative measurements of mouse brain thrombin-like and thrombin inhibition activities. Neuroreport 2001; 12 (11) 2347-2351
  • 118 Beilin O, Karussis DM, Korczyn AD. et al. Increased thrombin inhibition in experimental autoimmune encephalomyelitis. J Neurosci Res 2005; 79 (03) 351-359
  • 119 Han MH, Hwang SI, Roy DB. et al. Proteomic analysis of active multiple sclerosis lesions reveals therapeutic targets. Nature 2008; 451 (7182): 1076-1081
  • 120 Göbel K, Pankratz S, Asaridou CM. et al. Blood coagulation factor XII drives adaptive immunity during neuroinflammation via CD87-mediated modulation of dendritic cells. Nat Commun 2016; 7 (01) 11626
  • 121 De Luca C, Colangelo AM, Alberghina L, Papa M. Neuro-immune hemostasis: homeostasis and diseases in the central nervous system. Front Cell Neurosci 2018; 12 (November): 459
  • 122 Ziliotto N, Bernardi F, Jakimovski D, Zivadinov R. Coagulation pathways in neurological diseases: multiple sclerosis. Front Neurol 2019; 10 (April): 409
  • 123 Ziliotto N, Baroni M, Straudi S. et al. Coagulation factor XII levels and intrinsic thrombin generation in multiple sclerosis. Front Neurol 2018; 9 (APR): 245
  • 124 Maione F, Cicala C, Liverani E, Mascolo N, Perretti M, D'Acquisto F. IL-17A increases ADP-induced platelet aggregation. Biochem Biophys Res Commun 2011; 408 (04) 658-662
  • 125 Morel A, Miller E, Bijak M, Saluk J. The increased level of COX-dependent arachidonic acid metabolism in blood platelets from secondary progressive multiple sclerosis patients. Mol Cell Biochem 2016; 420 (1-2): 85-94
  • 126 Parsons ME, O'Connell K, Allen S. et al. Thrombin generation correlates with disease duration in multiple sclerosis (MS): novel insights into the MS-associated prothrombotic state. Mult Scler J Exp Transl Clin 2017; 3 (04) 2055217317747624
  • 127 Ryu JK, Petersen MA, Murray SG. et al. Blood coagulation protein fibrinogen promotes autoimmunity and demyelination via chemokine release and antigen presentation. Nat Commun 2015; 6 (01) 8164
  • 128 Do JL, Patel VR. Branch retinal vein occlusion associated with fingolimod treatment for multiple sclerosis. Can J Ophthalmol 2021; 56 (01) e21-e22
  • 129 Duarte-García A, Pham MM, Crowson CS. et al. The epidemiology of antiphospholipid syndrome: a population-based study. Arthritis Rheumatol 2019; 71 (09) 1545-1552
  • 130 Weidinger S, Beck LA, Bieber T, Kabashima K, Irvine AD. Antiphospholipid syndrome. Nat Rev Dis Primers 2018; 4 (01) 1-20
  • 131 Miyakis S, Lockshin MD, Atsumi T. et al. International consensus statement on an update of the classification criteria for definite antiphospholipid syndrome (APS). J Thromb Haemost 2006; 4 (02) 295-306
  • 132 de Groot PG, Urbanus RT. The significance of autoantibodies against β2-glycoprotein I. Blood 2012; 120 (02) 266-274
  • 133 Blank M, Faden D, Tincani A. et al. Immunization with anticardiolipin cofactor (beta-2-glycoprotein I) induces experimental antiphospholipid syndrome in naive mice. J Autoimmun 1994; 7 (04) 441-455
  • 134 Katzav A, Pick CG, Korczyn AD. et al. Hyperactivity in a mouse model of the antiphospholipid syndrome. Lupus 2001; 10 (07) 496-499
  • 135 Shrot S, Katzav A, Korczyn AD. et al. Behavioral and cognitive deficits occur only after prolonged exposure of mice to antiphospholipid antibodies. Lupus 2002; 11 (11) 736-743
  • 136 Seo JS, Svenningsson P. Modulation of ion channels and receptors by p11 (S100A10). Trends Pharmacol Sci 2020; 41 (07) 487-497
  • 137 Luo M, Hajjar KA. Annexin A2 system in human biology: cell surface and beyond. Semin Thromb Hemost 2013; 39 (04) 338-346
  • 138 Fassel H, Chen H, Ruisi M, Kumar N, DeSancho M, Hajjar KA. Reduced expression of annexin A2 is associated with impaired cell surface fibrinolysis and venous thromboembolism. Blood 2021; 137 (16) 2221-2230
  • 139 Weiss R, Bitton A, Ben Shimon M. et al. Annexin A2, autoimmunity, anxiety and depression. J Autoimmun 2016; 73: 92-99
  • 140 Weiss R, Bitton A, Nahary L. et al. Cross-reactivity between annexin A2 and Beta-2-glycoprotein I in animal models of antiphospholipid syndrome. Immunol Res 2017; 65 (01) 355-362
  • 141 Weiss R, Bushi D, Mindel E. et al. Autoantibodies to annexin A2 and cerebral thrombosis: insights from a mouse model. Lupus 2021; 30 (05) 775-784
  • 142 Seo JS, Wei J, Qin L, Kim Y, Yan Z, Greengard P. Cellular and molecular basis for stress-induced depression. Mol Psychiatry 2017; 22 (10) 1440-1447
  • 143 Warner-Schmidt JL, Flajolet M, Maller A. et al. Role of p11 in cellular and behavioral effects of 5-HT4 receptor stimulation. J Neurosci 2009; 29 (06) 1937-1946
  • 144 Jin J, Bhatti DL, Lee KW. et al. Ahnak scaffolds p11/Anxa2 complex and L-type voltage-gated calcium channel and modulates depressive behavior. Mol Psychiatry 2020; 25 (05) 1035-1049