Orthopädie und Unfallchirurgie up2date 2017; 12(02): 131-153
DOI: 10.1055/s-0042-109019
Grundlagen
Georg Thieme Verlag KG Stuttgart · New York

Angeborene Bindegewebserkrankungen mit skelettalem Phänotyp

Rolf E. Brenner
,
Rita Taurman
Further Information

Publication History

Publication Date:
08 May 2017 (online)

Dieser Beitrag beschäftigt sich mit den kongenitalen Bindegewebserkrankungen Osteogenesis imperfecta, Ehlers-Danlos- und Marfan-Syndrom. Für diese Entitäten werden die derzeit aktuellen Klassifikationen, diagnostischen Möglichkeiten, Abgrenzungen gegenüber phänotypisch ähnlichen Krankheitsbildern sowie konservative und operative Therapieoptionen dargestellt.

Kernaussagen

Wie in der vorliegenden Übersicht dargelegt repräsentieren die Osteogenesis imperfecta (OI), das Ehlers-Danlos-Syndrom (EDS) und das Marfan-Syndrom klassische angeborene Bindegewebserkrankungen mit teilweise überlappenden phänotypischen Merkmalen. Sie gehören alle zu den seltenen Erkrankungen und müssen von einer Reihe ebenfalls seltener angeborener Entitäten mit ähnlicher Symptomatik abgegrenzt werden. Andererseits haben sie klinisch in der Differenzialdiagnostik häufiger vorkommender Befunde bzw. Normvarianten nicht unerhebliche Bedeutung ([Abb. 7]). Daher ist das Wissen um diese Erkrankungen für das orthopädisch-unfallchirurgische Fachgebiet von praktischer Relevanz.

Die rasch wachsenden Erkenntnisse zu den genetischen Ursachen und molekularen Grundlagen führten in den letzten Jahren zur Unterteilung in weitere Subtypen (wie bei OI und EDS) bzw. zur Einordnung in neue Erkrankungsgruppen mit verwandtem Pathomechanismus (wie beim Marfan-Syndrom). Die sich hieraus ergebenden Möglichkeiten und Erfordernisse einer differenziellen Diagnostik dieser angeborenen Bindegewebserkrankungen sind sehr komplex und erfordern, wie deren Therapie, eine interdisziplinäre Vorgehensweise. In begründeten Verdachtsfällen sollte daher für eine weiterführende Diagnostik, Koordination notwendiger Follow-up-Untersuchungen sowie spezifische therapeutische Maßnahmen ein darauf spezialisiertes Zentrum einbezogen werden.

 
  • Literatur

  • 1 Brenner RE, Schiller B, Pontz BF. et al. Osteogenesis imperfecta in Kindheit und Adoleszenz. Monatsschr Kinderheilkd 1993; 141: 940-945
  • 2 Wirth T. Osteogenesis imperfecta. Orthopäde 2012; 41: 773-784
  • 3 Forlino A, Marini JC. Osteogenesis imperfecta. Lancet 2016; 387: 1657-1671
  • 4 Glorieux FH, Rauch F, Plotkin H. et al. Type V osteogenesis imperfecta: a new form of brittle bone disease. J Bone Miner Res 2000; 15: 1650-1658
  • 5 Cho TJ, Lee KE, Lee SK. et al. A single recurrent mutation in the 5′-UTR of IFITM5 causes osteogenesis imperfecta type V. Am J Human Genet 2012; 91: 343-348
  • 6 Semler O, Garbes L, Keupp K. et al. A mutation in the 5′-UTR of IFITM5 creates an in-frame start codon and causes autosomal-dominant osteogenesis imperfecta type V with hyperplastic callus. Am J Human Genet 2012; 91: 349-357
  • 7 Rauch F, Husseini A, Roughley P. et al. Lack of circulating pigment epithelium-derived factor is a marker of osteogenesis imperfecta type VI. J Clin Endocrinol Metab 2012; 97: E1550-E1556
  • 8 Glorieux FH, Ward LM, Rauch F. et al. Osteogenesis imperfecta type VI: a form of brittle bone disease with a mineralization defect. J Bone Miner Res 2002; 17: 30-38
  • 9 Van Dijk FS, Sillence DO. Osteogenesis imperfecta: clinical diagnosis, nomenclature and severity assessment. Am J Med Genet A 2014; 164?A: 1470-1481
  • 10 Warman ML, Cormier-Daire V, Hall C. et al. Nosology and classification of genetic skeletal disorders: 2010 revision. Am J Med Genet A 2011; 155?A: 943-968
  • 11 Pereira EM. Clinical perspectives on osteogenesis imperfecta versus non-accidental injury. Am J Med Genet C Sem Med Genet 2015; 169: 302-306
  • 12 Ha-Vinh R, Alanay Y, Bank RA. et al. Phenotypic and molecular characterization of Bruck syndrome (osteogenesis imperfecta with contractures of the large joints) caused by a recessive mutation in PLOD2. Am J Med Genet A 2004; 131: 115-120
  • 13 Kelley BP, Malfait F, Bonafe L. et al. Mutations in FKBP10 cause recessive osteogenesis imperfecta and Bruck syndrome. J Bone Miner Res 2011; 26: 666-672
  • 14 Balasubramanian M, Pollitt RC, Chandler KE. et al. CRTAP mutation in a patient with Cole-Carpenter syndrome. Am J Med Genet A 2015; 167?A: 587-591
  • 15 Garbes L, Kim K, Riess A. et al. Mutations in SEC24D, encoding a component of the COPII machinery, cause a syndromic form of osteogenesis imperfecta. Am J Human Genet 2015; 96: 432-439
  • 16 Rauch F, Fahiminiya S, Majewski J. et al. Cole-Carpenter syndrome is caused by a heterozygous missense mutation in P4HB. Am J Human Genet 2015; 96: 425-431
  • 17 Hartikka H, Makitie O, Mannikko M. et al. Heterozygous mutations in the LDL receptor-related protein 5 (LRP5) gene are associated with primary osteoporosis in children. J Bone Miner Res 2005; 20: 783-789
  • 18 Linglart A, Biosse-Duplan M. Hypophosphatasia. Curr Osteoporos Rep 2016; 14: 95-105
  • 19 Brunetti G, Marzano F, Colucci S. et al. Genotype-phenotype correlation in juvenile Paget disease: role of molecular alterations of the TNFRSF11B gene. Endocrine 2012; 42: 266-271
  • 20 Bronicki LM, Stevenson RE, Spranger JW. Beyond osteogenesis imperfecta: Causes of fractures during infancy and childhood. Am J Med Genet C Semin Med Genet 2015; 169: 314-327
  • 21 Brenner R. Frakturhäufung. In: Michalk D, Schönau E. Hrsg. Differenzialdiagnose Pädiatrie. 3. Aufl.. Berlin: Urban & Fischer, Elsevier; 2011: 631-634
  • 22 LoMauro A, Pochintesta S, Romei M. et al. Rib cage deformities alter respiratory muscle action and chest wall function in patients with severe osteogenesis imperfecta. PloS One 2012; 7: e35965
  • 23 Arponen H, Makitie O, Haukka J. et al. Prevalence and natural course of craniocervical junction anomalies during growth in patients with osteogenesis imperfecta. J Bone Miner Res 2012; 27: 1142-1149
  • 24 Brenner RE, Vetter U, Bollen AM. et al. Bone resorption assessed by immunoassay of urinary cross-linked collagen peptides in patients with osteogenesis imperfecta. J Bone Miner Res 1994; 9: 993-997
  • 25 Land C, Rauch F, Munns CF. et al. Vertebral morphometry in children and adolescents with osteogenesis imperfecta: effect of intravenous pamidronate treatment. Bone 2006; 39: 901-906
  • 26 Sato A, Ouellet J, Muneta T. et al. Scoliosis in osteogenesis imperfecta caused by COL1A1/COL1A2 mutations – genotype-phenotype correlations and effect of bisphosphonate treatment. Bone 2016; 86: 53-57
  • 27 Dwan K, Phillipi CA, Steiner RD. et al. Bisphosphonate therapy for osteogenesis imperfecta. Cochrane Database Syst Rev 2014; (07) CD005088
  • 28 Hald JD, Evangelou E, Langdahl BL. et al. Bisphosphonates for the prevention of fractures in osteogenesis imperfecta: meta-analysis of placebo-controlled trials. J Bone Miner Res 2015; 30: 929-933
  • 29 Vetter U, Pontz B, Zauner E. et al. Osteogenesis imperfecta: a clinical study of the first ten years of life. Calc Tissue Int 1992; 50: 36-41
  • 30 Glorieux FH, Bishop NJ, Plotkin H. et al. Cyclic administration of pamidronate in children with severe osteogenesis imperfecta. New Engl J Med 1998; 339: 947-952
  • 31 Gatti D, Antoniazzi F, Prizzi R. et al. Intravenous neridronate in children with osteogenesis imperfecta: a randomized controlled study. J Bone Miner Res 2005; 20: 758-763
  • 32 Ward LM, Rauch F, Whyte MP. et al. Alendronate for the treatment of pediatric osteogenesis imperfecta: a randomized placebo-controlled study. J Clin Endocrinol Metab 2011; 96: 355-364
  • 33 Bonafé L, Giunta C, Hasler C. et al. Osteogenesis imperfecta: Klinik, Diagnose und Management vom Kindes- bis ins Erwachsenenalter. Schweiz Med Forum 2013; 13: 925-931
  • 34 Brizola E, Shapiro JR. Bisphosphonate treatment of children and adults with osteogenesis imperfecta: unanswered questions. Calc Tissue Int 2015; 97: 101-103
  • 35 Marini JC. Bone: Use of bisphosphonates in children-proceed with caution. Nat Rev Endocrinol 2009; 5: 241-243
  • 36 Vasanwala RF, Sanghrajka A, Bishop NJ. et al. Recurrent proximal femur fractures in a teenager with osteogenesis imperfecta on continuous bisphosphonate therapy: Are we overtreating?. J Bone Miner Res 2016; 31: 1449-1454
  • 37 Munns CF, Rauch F, Zeitlin L. et al. Delayed osteotomy but not fracture healing in pediatric osteogenesis imperfecta patients receiving pamidronate. J Bone Miner Res 2004; 19: 1779-1786
  • 38 Rauch F, Travers R, Glorieux FH. Pamidronate in children with osteogenesis imperfecta: histomorphometric effects of long-term therapy. J Clin Endocrinol Metab 2006; 91: 511-516
  • 39 Lindahl K, Langdahl B, Ljunggren O. et al. Treatment of osteogenesis imperfecta in adults. Eur J Endocrinol 2014; 171: R79-R90
  • 40 Ranganath P, Stephen J, Iyengar R. et al. Worsening of callus hyperplasia after bisphosphonate treatment in type V osteogenesis imperfecta. Indian Pediat 2016; 53: 250-252
  • 41 Zeitlin L, Rauch F, Travers R. et al. The effect of cyclical intravenous pamidronate in children and adolescents with osteogenesis imperfecta type V. Bone 2006; 38: 13-20
  • 42 Land C, Rauch F, Travers R. et al. Osteogenesis imperfecta type VI in childhood and adolescence: effects of cyclical intravenous pamidronate treatment. Bone 2007; 40: 638-644
  • 43 Hoyer-Kuhn H, Netzer C, Koerber F. et al. Two yearsʼ experience with denosumab for children with osteogenesis imperfecta type VI. Orphanet J Rare Dis 2014; 9: 145
  • 44 Cheung MS, Glorieux FH, Rauch F. Natural history of hyperplastic callus formation in osteogenesis imperfecta type V. J Bone Miner Res 2007; 22: 1181-1186
  • 45 Bailey RW, Dubow HI. Studies of longitudinal bone growth resulting in an extensible nail. Surg Forum 1963; 14: 455-458
  • 46 Wörsdörfer O, Vetter U, Brenner R. Femurosteosynthesen mit dem Teleskopnagel nach Bailey-Dubow bei Osteogenesis imperfecta. Oper Orthop Traumatol 1990; 2: 122-130
  • 47 Karbowski A, Schwitalle M, Brenner R. et al. Experience with Bailey-Dubow rodding in children with osteogenesis imperfecta. Z Kinderchir 2000; 10: 119-124
  • 48 Birke O, Davies N, Latimer M. et al. Experience with the Fassier-Duval telescopic rod: first 24 consecutive cases with a minimum of 1-year follow-up. J Pediat Orthop 2011; 31: 458-464
  • 49 Meurer A, Lewens T, Schmitt D. et al. Diagnostik und Therapie der Osteogenesis imperfecta. Orthopäde 2008; 37: 17-23
  • 50 Döderlein L, Wenz W, Schneider U. Der Knickplattfuß. Berlin, Heidelberg: Springer; 2002
  • 51 Ibrahim AG, Crockard HA. Basilar impression and osteogenesis imperfecta: a 21-year retrospective review of outcomes in 20 patients. J Neurosurg Spine 2007; 7: 594-600
  • 52 Sobey G. Ehlers-Danlos syndrome: how to diagnose and when to perform genetic tests. Arch Dis Child 2015; 100: 57-61
  • 53 Beighton P, De Paepe A, Steinmann B. et al. Ehlers-Danlos syndromes: revised nosology, Villefranche, 1997. Ehlers-Danlos National Foundation (USA) and Ehlers-Danlos Support Group (UK). Am J Med Genet 1998; 77: 31-37
  • 54 Beighton P, Solomon L, Soskolne CL. Articular mobility in an African population. Ann Rheum Dis 1973; 32: 413-418
  • 55 Eller-Vainicher C, Bassotti A, Imeraj A. et al. Bone involvement in adult patients affected with Ehlers-Danlos syndrome. Osteoporos Int 2016; 27: 2525-2531
  • 56 Mazziotti G, Dordoni C, Doga M. et al. High prevalence of radiological vertebral fractures in adult patients with Ehlers-Danlos syndrome. Bone 2016; 84: 88-92
  • 57 Hausser I, Anton-Lamprecht I. Differential ultrastructural aberrations of collagen fibrils in Ehlers-Danlos syndrome types I–IV as a means of diagnostics and classification. Human Genet 1994; 93: 394-407
  • 58 Malfait F, Wenstrup RJ, De Paepe A. Clinical and genetic aspects of Ehlers-Danlos syndrome, classic type. Genet Med 2010; 12: 597-605
  • 59 Castori M, Colombi M. Generalized joint hypermobility, joint hypermobility syndrome and Ehlers-Danlos syndrome, hypermobility type. Am J Med Genet C Semin Med Genet 2015; 169?C: 1-5
  • 60 Zweers MC, Bristow J, Steijlen PM. et al. Haploinsufficiency of TNXB is associated with hypermobility type of Ehlers-Danlos syndrome. Am J Human Genet 2003; 73: 214-217
  • 61 Brinckmann J, Acil Y, Feshchenko S. et al. Ehlers-Danlos syndrome type VI: lysyl hydroxylase deficiency due to a novel point mutation (W612C). Arch Dermatol Res 1998; 290: 181-186
  • 62 Acil Y, Vetter U, Brenner R. et al. Ehlers-Danlos syndrome type VI: cross-link pattern in tissue and urine sample as a diagnostic marker. J Am Acad Dermatol 1995; 33: 522-524
  • 63 Lehmann HW, Mundlos S, Winterpacht A. et al. Ehlers-Danlos syndrome type VII: phenotype and genotype. Arch Dermatol Res 1994; 286: 425-428
  • 64 Malfait F, De Coster P, Hausser I. et al. The natural history, including orofacial features of three patients with Ehlers-Danlos syndrome, dermatosparaxis type (EDS type VIIC). Am J Med Genet A 2004; 131: 18-28
  • 65 Burch GH, Gong Y, Liu W. et al. Tenascin-X deficiency is associated with Ehlers-Danlos syndrome. Nature Genet 1997; 17: 104-108
  • 66 Baumann M, Giunta C, Krabichler B. et al. Mutations in FKBP14 cause a variant of Ehlers-Danlos syndrome with progressive kyphoscoliosis, myopathy, and hearing loss. Am J Human Genet 2012; 90: 201-216
  • 67 Janecke AR, Li B, Boehm M. et al. The phenotype of the musculocontractural type of Ehlers-Danlos syndrome due to CHST14 mutations. Am J Med Genet A 2016; 170: 103-115
  • 68 Salter CG, Davies JH, Moon RJ. et al. Further defining the phenotypic spectrum of B4GALT7 mutations. Am J Med Genet A 2016; 170: 1556-1563
  • 69 Cabral WA, Makareeva E, Colige A. et al. Mutations near amino end of alpha1(I) collagen cause combined osteogenesis imperfecta/Ehlers-Danlos syndrome by interference with N-propeptide processing. J Biol Chem 2005; 280: 19259-19269
  • 70 Kirschner J, Hausser I, Zou Y. et al. Ullrich congenital muscular dystrophy: connective tissue abnormalities in the skin support overlap with Ehlers-Danlos syndromes. Am J Med Genet A 2005; 132?A: 296-301
  • 71 Hefti F. Kinderorthopädie in der Praxis. Berlin, Heidelberg: Springer; 2015
  • 72 Akpinar S, Gogus A, Talu U. et al. Surgical management of the spinal deformity in Ehlers-Danlos syndrome type VI. Eur Spine J 2003; 12: 135-140
  • 73 Dietz HC, Cutting GR, Pyeritz RE. et al. Marfan syndrome caused by a recurrent de novo missense mutation in the fibrillin gene. Nature (London) 1991; 352: 337-339
  • 74 Tiecke F, Katzke S, Booms P. et al. Classic, atypically severe and neonatal Marfan syndrome: twelve mutations and genotype-phenotype correlations in FBN1 exons 24–40. Eur J Human Genet 2001; 9: 13-21
  • 75 Neptune ER, Frischmeyer PA, Arking DE. et al. Dysregulation of TGF-beta activation contributes to pathogenesis in Marfan syndrome. Nature Genet 2003; 33: 407-411
  • 76 Cannaerts E, van de Beek G, Verstraeten A. et al. TGF-beta signalopathies as a paradigm for translational medicine. Eur Med Genet 2015; 58: 695-703
  • 77 Loeys BL, Dietz HC, Braverman AC. et al. The revised Ghent nosology for the Marfan syndrome. J Med Genet 2010; 47: 476-485
  • 78 De Paepe A, Devereux RB, Dietz HC. et al. Revised diagnostic criteria for the Marfan syndrome. Am J Med Genet 1996; 62: 417-426
  • 79 Doyle AJ, Doyle JJ, Bessling SL. et al. Mutations in the TGF-beta repressor SKI cause Shprintzen-Goldberg syndrome with aortic aneurysm. Nature Genet 2012; 44: 1249-1254
  • 80 Callewaert BL, Loeys BL, Ficcadenti A. et al. Comprehensive clinical and molecular assessment of 32 probands with congenital contractural arachnodactyly: report of 14 novel mutations and review of the literature. Human Mutat 2009; 30: 334-341
  • 81 Chandra A, Charteris D. Molecular pathogenesis and management strategies of ectopia lentis. Eye 2014; 28: 162-168
  • 82 Singh MN, Lacro RV. Recent Clinical drug trials evidence in Marfan syndrome and clinical implications. Can J Cardiol 2016; 32: 66-77
  • 83 Herring J. Tachdjianʼs pediatric Orthopaedics. 5th ed. Philadelphia: Saunders; 2013
  • 84 Gjolaj JP, Sponseller PD, Shah SA. et al. Spinal deformity correction in Marfan syndrome versus adolescent idiopathic scoliosis: learning from the differences. Spine 2012; 37: 1558-1565
  • 85 Van de Velde S, Fillman R, Yandow S. Protrusio acetabuli in Marfan Syndrome. J Bone Joint Surg 2006; 88: 639-646