Semin Respir Crit Care Med 2022; 43(04): 473-479
DOI: 10.1055/s-0042-1747930
Review Article

Nodules, Navigation, Robotic Bronchoscopy, and Real-Time Imaging

Christopher J. Manley
1   Division of Pulmonary and Critical Care, Fox Chase Cancer Center, Temple University Health System, Philadelphia, Pennsylvania
,
Michael A. Pritchett
2   Division of Pulmonary and Critical Care Medicine, Chest Center of the Carolinas at FirstHealth, FirstHealth of the Carolinas and Pinehurst Medical Clinic, Pinehurst, North Carolina
› Author Affiliations

Abstract

The process of detection, diagnosis, and management of lung nodules is complex due to the heterogeneity of lung pathology and a relatively low malignancy rate. Technological advances in bronchoscopy have led to less-invasive diagnostic procedures and advances in imaging technology have helped to improve nodule localization and biopsy confirmation. Future research is required to determine which modality or combination of complimentary modalities is best suited for safe, accurate, and cost-effective management of lung nodules.



Publication History

Article published online:
14 September 2022

© 2022. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Gould MK, Tang T, Liu IL. et al. Recent trends in the identification of incidental pulmonary nodules. Am J Respir Crit Care Med 2015; 192 (10) 1208-1214
  • 2 Wahidi MM, Govert JA, Goudar RK, Gould MK, McCrory DC. American College of Chest Physicians. Evidence for the treatment of patients with pulmonary nodules: when is it lung cancer?: ACCP evidence-based clinical practice guidelines (2nd edition). Chest 2007; 132 (3, suppl): 94S-107S
  • 3 Gohagan J, Marcus P, Fagerstrom R, Pinsky P, Kramer B, Prorok P. Writing Committee, Lung Screening Study Research Group. Baseline findings of a randomized feasibility trial of lung cancer screening with spiral CT scan vs chest radiograph: the Lung Screening Study of the National Cancer Institute. Chest 2004; 126 (01) 114-121
  • 4 Aberle DR, Adams AM, Berg CD. et al; National Lung Screening Trial Research Team. Reduced lung-cancer mortality with low-dose computed tomographic screening. N Engl J Med 2011; 365 (05) 395-409
  • 5 Lee HW, Jin KN, Lee JK. et al. Long-term follow-up of ground-glass nodules after 5 years stability. J Thorac Oncol 2019; 14 (08) 1370-1377
  • 6 Oh J-Y, Kwon S-Y, Yoon H-I. et al. Clinical significance of a solitary ground-glass opacity (GGO) lesion of the lung detected by chest CT. Lung Cancer 2007; 55 (01) 67-73
  • 7 Son JY, Lee HY, Lee KS. et al. Quantitative CT analysis of pulmonary ground-glass opacity nodules for the distinction of invasive adenocarcinoma from pre-invasive or minimally invasive adenocarcinoma. PLoS One 2014; 9 (08) e104066
  • 8 Kobayashi Y, Fukui T, Ito S. et al. How long should small lung lesions of ground-glass opacity be followed?. J Thorac Oncol 2013; 8 (03) 309-314
  • 9 Sawada S, Yamashita N, Sugimoto R, Ueno T, Yamashita M. Long-term outcomes of patients with ground-glass opacities detected using CT scanning. Chest 2017; 151 (02) 308-315
  • 10 Heidinger BH, Anderson KR, Nemec U. et al. Lung adenocarcinoma manifesting as pure ground-glass nodules: correlating CT size, volume, density, and roundness with histopathologic invasion and size. J Thorac Oncol 2017; 12 (08) 1288-1298
  • 11 Cho JH, Choi YS, Kim J, Kim HK, Zo JI, Shim YM. Long-term outcomes of wedge resection for pulmonary ground-glass opacity nodules. Ann Thorac Surg 2015; 99 (01) 218-222
  • 12 Kobayashi Y, Mitsudomi T, Sakao Y, Yatabe Y. Genetic features of pulmonary adenocarcinoma presenting with ground-glass nodules: the differences between nodules with and without growth. Ann Oncol 2015; 26 (01) 156-161
  • 13 MacMahon H, Naidich DP, Goo JM. et al. Guidelines for managemnet of incidental pulmonary nodules detected on CT images: from the Fleischner Society 2917. Radiology 2017; 284 (01) 228-243
  • 14 American College of Radiology Committee on Lung-RADS®.. Lung-RADS Assessment Categories version1.1. Accessed September 1, 2021 at: https://www.acr.org/-/media/ACR/Files/RADS/Lung-RADS/LungRADSAssessmentCategoriesv1-1.pdf
  • 15 Henschke CI, Yankelevitz DF, Naidich DP. et al. CT screening for lung cancer: suspiciousness of nodules according to size on baseline scans. Radiology 2004; 231 (01) 164-168
  • 16 Munden RF, Pugatch RD, Liptay MJ, Sugarbaker DJ, Le LU. Small pulmonary lesions detected at CT: clinical importance. Radiology 1997; 202 (01) 105-110
  • 17 Ikeda S, Yanai N, Ishikawa S. Flexible bronchofiberscope. Keio J Med 1968; 17 (01) 1-16
  • 18 Ikeda S, Tsuboi E, Ono R, Ishikawa S. Flexible bronchofiberscope. Jpn J Clin Oncol 1971; 1 (01) 55-65
  • 19 Torrington KG, Kern JD. The utility of fiberoptic bronchoscopy in the evaluation of the solitary pulmonary nodule. Chest 1993; 104 (04) 1021-1024
  • 20 Herth FJ, Ernst A, Becker HD. Endobronchial ultrasound-guided transbronchial lung biopsy in solitary pulmonary nodules and peripheral lesions. Eur Respir J 2002; 20 (04) 972-974
  • 21 Gasparini S, Ferretti M, Secchi EB, Baldelli S, Zuccatosta L, Gusella P. Integration of transbronchial and percutaneous approach in the diagnosis of peripheral pulmonary nodules or masses. Experience with 1,027 consecutive cases. Chest 1995; 108 (01) 131-137
  • 22 Sumi T, Ikeda T, Sawai T. et al. Comparison of ultrathin bronchoscopy with conventional bronchoscopy for the diagnosis of peripheral lung lesions without virtual bronchial navigation. Respir Investig 2020; 58 (05) 376-380
  • 23 Oki M, Saka H, Ando M. et al. Ultrathin bronhoscopy with multimodal devices for peripheral pulmonary lesions: a randomized trial. Am J Respir Crit Care Med 2015; 192 (04) 468-476
  • 24 Oki M, Saka H, Asano F. et al. Use of ultrathin vs thin bronchoscope for peripheral pulmonary lesions: a randomized trial. Chest 2019; 156 (05) 954-964
  • 25 Vining DJ, Liu K, Choplin RH, Haponik EF. Virtual bronchoscopy. Relationships of virtual reality endobronchial simulations to actual bronchoscopic findings. Chest 1996; 109 (02) 549-553
  • 26 Ferguson JS, McLennan G. Virtual bronchoscopy. Proc Am Thorac Soc 2005; 2 (06) 488-491 , 504–505
  • 27 Gildea TR, Mazzone PJ, Karnak D, Meziane M, Mehta AC. Electromagnetic navigation diagnostic bronchoscopy: a prospective study. Am J Respir Crit Care Med 2006; 174 (09) 982-989
  • 28 Ost DE, Ernst A, Lei X. et al; AQuIRE Bronchoscopy Registry. Diagnostic yield and complications of bronchoscopy for peripheral lung leisons. Results of the AQuIRE registry. Am J Respir Crit Care Med 2016; 193 (01) 68-77
  • 29 Wang Memoli JS, Nietert PJ, Silvestri GA. Meta-analysis of guided bronchoscopy for the evaluation of the pulmonary nodule. Chest 2012; 142 (02) 385-393
  • 30 Folch EE, Pritchett MA, Nead MA. et al; NAVIGATE Study Investigators. Electromagnetic navigation bronchoscopy for peripheral pulmonary lesions: one year results of the prospective, multicenter NAVIGATE study. J Thorac Oncol 2019; 14 (03) 445-458
  • 31 Murgu SD. Robotic assisted-bronchoscopy: technical tips and lessons learned from the initial experience with sampling peripheral lung lesions. BMC Pulm Med 2019; 19 (01) 89
  • 32 Fielding DIK, Bashirzadeh F, Son JH. et al. First human use of a new robotic-assisted fiber optic sensing navigation system for small peripheral pulmonary nodules. Respiration 2019; 98 (02) 142-150
  • 33 Chen AC, Gillespie CT. Robotic endoscopic airway challenge: REACH assessment. Ann Thorac Surg 2018; 106 (01) 293-297
  • 34 Yarmus L, Akulian J, Wahidi M. et al; Interventional Pulmonary Outcomes Group (IPOG). A prospective randomized comparative study of three guided bronchoscopic approaches for infestigating pulmonary nodules: the PRECISION-1 study. Chest 2020; 157 (03) 694-701
  • 35 Chaddha U, Kovacs SP, Manley C. et al. Robot-assisted bronchoscopy for pulmonary lesion diagnosis: results from the initial multicenter experience. BMC Pulm Med 2019; 19 (01) 243
  • 36 Chen AC, Pastis Jr NJ, Mahajan AK. et al. Robotic bronchoscopy for peripheral pulmonary lesions: a multicenter pilot and feasibility study (BENEFIT). Chest 2021; 159 (02) 845-852
  • 37 Kalchiem-Dekel O, Connolly JG, Lin I-H. et al. Shape-sensing robotic-assisted bronchoscopy in the diagnosis of pulmonary parenchymal lesions. Chest 2022; 161 (02) 572-582
  • 38 Garpestad E, Goldberg S, Herth F. et al. CT fluoroscopy guidance for transbronchial needle aspiration: an experience in 35 patients. Chest 2001; 119 (02) 329-332
  • 39 Tanner NT, Yarmus L, Chen A. et al. Standard bronchoscopy with fluoroscopy vs thin bronchoscopy and radial endobronchial ultrasound for biopsy of pulmonary lesions: a multicenter, prospective, randomized trial. Chest 2018; 154 (05) 1035-1043
  • 40 Bertolaccini L, Viti A, Terzi A. Digital tomosynthesis in lung cancer: state of the art. Ann Transl Med 2015; 3 (10) 139
  • 41 Cicenia J, Bhadra K, Sethi S, Nader DA, Whitten P, Hogarth DK. Augmented fluoroscopy: a new and novel navigation platform for peripheral bronchoscopy. J Bronchology Interv Pulmonol 2021; 28 (02) 116-123
  • 42 Pritchett MA. Prospective analysis of a novel endobronchial augmented fluoroscopic navigation system for diagnosis of peripheral pulmonary lesions. J Bronchology Interv Pulmonol 2021; 28 (02) 107-115
  • 43 Setser R, Chintalapani G, Bhadra K, Casal RF. Cone beam CT imaging for bronchoscopy: a technical review. J Thorac Dis 2020; 12 (12) 7416-7428
  • 44 Pritchett M, Schirmer C, van Alfen M, Schampaert S. Novel CBCT-based navigation prototype for bronchoscopic biopsy of peripheral lung nodules: a feasibility study. Chest 2019; 156 (4, suppl): A831-A832
  • 45 Casal RF, Sarkiss M, Jones AK. et al. Cone beam computed tomography-guided thin/ultrathin bronchoscopy for diagnosis of peripheral lung nodules: a prospective pilot study. J Thorac Dis 2018; 10 (12) 6950-6959
  • 46 Kalchiem-Dekel O, Fuentes P, Bott MJ. et al. Multiplanar 3D fluoroscopy redefines tool-lesion relationship during robotic-assisted bronchoscopy. Respirology 2021; 26 (01) 120-123
  • 47 Elliott AD. Confocal microscopy: principles and modern practices. Curr Protoc Cytom 2020; 92 (01) e68
  • 48 Poole JJA, Mostaço-Guidolin LB. Optical microscopy and the extracellular matrix structure: a review. Cells 2021; 10 (07) 1760
  • 49 Streba CT, Gîltan AM, Gheonea IA. et al. Utility of confocal laser endomicroscopy in pulmonology and lung cancer. Rom J Morphol Embryol 2016; 57 (04) 1221-1227
  • 50 Filner JJ, Bonura EJ, Lau ST. et al. Bronchoscopic fibered confocal fluorescence microscopy image characteristics and pathologic correlations. J Bronchology Interv Pulmonol 2011; 18 (01) 23-30
  • 51 Bondesson D, Schneider MJ, Silbernagel E, Behr J, Reichenberger F, Dinkel J. Automated evaluation of probe-based confocal laser endomicroscopy in the lung. PLoS One 2020; 15 (05) e0232847
  • 52 Fuchs FS, Zirlik S, Hildner K, Schubert J, Vieth M, Neurath MF. Confocal laser endomicroscopy for diagnosing lung cancer in vivo. Eur Respir J 2013; 41 (06) 1401-1408
  • 53 Hassan T, Piton N, Lachkar S, Salaün M, Thiberville L. A novel method for in vivo imaging of solitary lung nodules using navigational bronchoscopy and confocal laser endomicroscopy. Lung 2015; 193 (05) 773-778
  • 54 Fuchs FS, Zirlik S, Hildner K. et al. Fluorescein-aided confocal laser endomicroscopy of the lung. Respiration 2011; 81 (01) 32-38
  • 55 Wijmans L, Yared J, de Bruin DM. et al. Needle-based confocal laser endomicroscopy for real-time diagnosing and staging of lung cancer. Eur Respir J 2019; 53 (06) 1801520
  • 56 Kramer T, Wijmans L, de Bruin M. et al. Bronchoscopic needle-based confocal laser endomicroscopy (nCLE) as a real-time detection tool for peripheral lung cancer. Thorax 2022; 77 (04) 370-377