Semin Respir Crit Care Med 2022; 43(03): 346-368
DOI: 10.1055/s-0042-1748917
Review Article

Monitoring Lung Injury Severity and Ventilation Intensity during Mechanical Ventilation

Emanuele Rezoagli
1   School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
2   Department of Emergency and Intensive Care, San Gerardo University Hospital, Monza, Italy
,
John G. Laffey*
3   School of Medicine, National University of Ireland, Galway, Ireland
4   Department of Anaesthesia and Intensive Care Medicine, Galway University Hospitals, Saolta University Hospital Group, Galway, Ireland
5   Lung Biology Group, Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, National University of Ireland Galway, Galway, Ireland
,
Giacomo Bellani*
1   School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
2   Department of Emergency and Intensive Care, San Gerardo University Hospital, Monza, Italy
› Author Affiliations

Abstract

Acute respiratory distress syndrome (ARDS) is a severe form of respiratory failure burden by high hospital mortality. No specific pharmacologic treatment is currently available and its ventilatory management is a key strategy to allow reparative and regenerative lung tissue processes. Unfortunately, a poor management of mechanical ventilation can induce ventilation induced lung injury (VILI) caused by physical and biological forces which are at play. Different parameters have been described over the years to assess lung injury severity and facilitate optimization of mechanical ventilation. Indices of lung injury severity include variables related to gas exchange abnormalities, ventilatory setting and respiratory mechanics, ventilation intensity, and the presence of lung hyperinflation versus derecruitment. Recently, specific indexes have been proposed to quantify the stress and the strain released over time using more comprehensive algorithms of calculation such as the mechanical power, and the interaction between driving pressure (DP) and respiratory rate (RR) in the novel DP multiplied by four plus RR [(4 × DP) + RR] index. These new parameters introduce the concept of ventilation intensity as contributing factor of VILI. Ventilation intensity should be taken into account to optimize protective mechanical ventilation strategies, with the aim to reduce intensity to the lowest level required to maintain gas exchange to reduce the potential for VILI. This is further gaining relevance in the current era of phenotyping and enrichment strategies in ARDS.

* John G. Laffey and Giacomo Bellani are co–senior authors.




Publication History

Article published online:
27 July 2022

© 2022. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Levitt JE, Matthay MA. Treatment of acute lung injury: historical perspective and potential future therapies. Semin Respir Crit Care Med 2006; 27 (04) 426-437
  • 2 McNicholas B, Rezoagli E, Laffey JG. Acute hypoxemic respiratory failure and acute respiratory distress syndrome. In: Bellani G. ed. Mechanical Ventilation from Pathophysiology to Clinical Evidence. Springer Nature; 2022
  • 3 Ranieri VM, Rubenfeld GD, Thompson BT. et al. ARDS Definition Task Force. Acute respiratory distress syndrome: the Berlin definition. JAMA 2012; 307 (23) 2526-2533
  • 4 Pham T, Pesenti A, Bellani G. et al. LUNG SAFE Investigators and the European Society of Intensive Care Medicine Trials Group. Outcome of acute hypoxaemic respiratory failure: insights from the LUNG SAFE Study. Eur Respir J 2021; 57 (06) 2003317
  • 5 Grasselli G, Cattaneo E, Florio G. et al. Mechanical ventilation parameters in critically ill COVID-19 patients: a scoping review. Crit Care 2021; 25 (01) 115
  • 6 Rezoagli E, Magliocca A, Bellani G, Pesenti A, Grasselli G. Development of a critical care response - experiences from Italy during the coronavirus disease 2019 pandemic. Anesthesiol Clin 2021; 39 (02) 265-284
  • 7 Wendel Garcia PD, Aguirre-Bermeo H, Buehler PK. et al. RISC-19-ICU Investigators. Implications of early respiratory support strategies on disease progression in critical COVID-19: a matched subanalysis of the prospective RISC-19-ICU cohort. Crit Care 2021; 25 (01) 175
  • 8 Rezoagli E, Fumagalli R, Bellani G. Definition and epidemiology of acute respiratory distress syndrome. Ann Transl Med 2017; 5 (14) 282
  • 9 Bellani G, Laffey JG, Pham T. et al. LUNG SAFE Investigators, ESICM Trials Group. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. JAMA 2016; 315 (08) 788-800
  • 10 Horie S, McNicholas B, Rezoagli E. et al. Emerging pharmacological therapies for ARDS: COVID-19 and beyond. Intensive Care Med 2020; 46 (12) 2265-2283
  • 11 Shah FA, Meyer NJ, Angus DC. et al. A research agenda for precision medicine in sepsis and acute respiratory distress syndrome: an official American Thoracic Society Research Statement. Am J Respir Crit Care Med 2021; 204 (08) 891-901
  • 12 Beitler JR, Thompson BT, Baron RM. et al. Advancing precision medicine for acute respiratory distress syndrome. Lancet Respir Med 2022; 10 (01) 107-120
  • 13 Menk M, Estenssoro E, Sahetya SK. et al. Current and evolving standards of care for patients with ARDS. Intensive Care Med 2020; 46 (12) 2157-2167
  • 14 Cardinal-Fernández P, Lorente JA, Ballén-Barragán A, Matute-Bello G. Acute respiratory distress syndrome and diffuse alveolar damage. New insights on a complex relationship. Ann Am Thorac Soc 2017; 14 (06) 844-850
  • 15 Tomashefski Jr JF. Pulmonary pathology of acute respiratory distress syndrome. Clin Chest Med 2000; 21 (03) 435-466
  • 16 Katzenstein AL, Bloor CM, Leibow AA. Diffuse alveolar damage – the role of oxygen, shock, and related factors. A review. Am J Pathol 1976; 85 (01) 209-228
  • 17 Thille AW, Esteban A, Fernández-Segoviano P. et al. Comparison of the Berlin definition for acute respiratory distress syndrome with autopsy. Am J Respir Crit Care Med 2013; 187 (07) 761-767
  • 18 de Hemptinne Q, Remmelink M, Brimioulle S, Salmon I, Vincent JL. ARDS: a clinicopathological confrontation. Chest 2009; 135 (04) 944-949
  • 19 Thompson BT, Matthay MA. The Berlin definition of ARDS versus pathological evidence of diffuse alveolar damage. Am J Respir Crit Care Med 2013; 187 (07) 675-677
  • 20 Esteban A, Fernández-Segoviano P, Frutos-Vivar F. et al. Comparison of clinical criteria for the acute respiratory distress syndrome with autopsy findings. Ann Intern Med 2004; 141 (06) 440-445
  • 21 Cardinal-Fernández P, Bajwa EK, Dominguez-Calvo A, Menéndez JM, Papazian L, Thompson BT. The presence of diffuse alveolar damage on open lung biopsy is associated with mortality in patients with acute respiratory distress syndrome: a systematic review and meta-analysis. Chest 2016; 149 (05) 1155-1164
  • 22 Santos C, Ferrer M, Roca J, Torres A, Hernández C, Rodriguez-Roisin R. Pulmonary gas exchange response to oxygen breathing in acute lung injury. Am J Respir Crit Care Med 2000; 161 (01) 26-31
  • 23 Coudroy R, Chen L, Pham T, Piraino T, Telias I, Brochard L. Acute respiratory distress syndrome: respiratory monitoring and pulmonary physiology. Semin Respir Crit Care Med 2019; 40 (01) 66-80
  • 24 Nieman GF, Gatto LA, Habashi NM. Impact of mechanical ventilation on the pathophysiology of progressive acute lung injury. J Appl Physiol (1985) 2015; 119 (11) 1245-1261
  • 25 Henzler D, Pelosi P, Bensberg R. et al. Effects of partial ventilatory support modalities on respiratory function in severe hypoxemic lung injury. Crit Care Med 2006; 34 (06) 1738-1745
  • 26 Kallet RH. Patient-ventilator interaction during acute lung injury, and the role of spontaneous breathing: part 1: respiratory muscle function during critical illness. Respir Care 2011; 56 (02) 181-189
  • 27 Mascheroni D, Kolobow T, Fumagalli R, Moretti MP, Chen V, Buckhold D. Acute respiratory failure following pharmacologically induced hyperventilation: an experimental animal study. Intensive Care Med 1988; 15 (01) 8-14
  • 28 Bellani G, Laffey JG, Pham T. et al. LUNG SAFE Investigators, ESICM Trials Group. Noninvasive ventilation of patients with acute respiratory distress syndrome. Insights from the LUNG SAFE Study. Am J Respir Crit Care Med 2017; 195 (01) 67-77
  • 29 Brochard L, Slutsky A, Pesenti A. Mechanical ventilation to minimize progression of lung injury in acute respiratory failure. Am J Respir Crit Care Med 2017; 195 (04) 438-442
  • 30 Lee WL, Slutsky AS. Ventilator-induced lung injury and recommendations for mechanical ventilation of patients with ARDS. Semin Respir Crit Care Med 2001; 22 (03) 269-280
  • 31 Dreyfuss D, Hubmayr R. What the concept of VILI has taught us about ARDS management. Intensive Care Med 2016; 42 (05) 811-813
  • 32 Slutsky AS, Ranieri VM. Ventilator-induced lung injury. N Engl J Med 2013; 369 (22) 2126-2136
  • 33 Webb HH, Tierney DF. Experimental pulmonary edema due to intermittent positive pressure ventilation with high inflation pressures. Protection by positive end-expiratory pressure. Am Rev Respir Dis 1974; 110 (05) 556-565
  • 34 Tremblay LN, Slutsky AS. Ventilator-induced injury: from barotrauma to biotrauma. Proc Assoc Am Physicians 1998; 110 (06) 482-488
  • 35 Mead J, Takishima T, Leith D. Stress distribution in lungs: a model of pulmonary elasticity. J Appl Physiol 1970; 28 (05) 596-608
  • 36 Slutsky AS, Tremblay LN. Multiple system organ failure. Is mechanical ventilation a contributing factor?. Am J Respir Crit Care Med 1998; 157 (6, Pt 1): 1721-1725
  • 37 Ranieri VM, Suter PM, Tortorella C. et al. Effect of mechanical ventilation on inflammatory mediators in patients with acute respiratory distress syndrome: a randomized controlled trial. JAMA 1999; 282 (01) 54-61
  • 38 Wakabayashi K, Wilson MR, Tatham KC, O'Dea KP, Takata M. Volutrauma, but not atelectrauma, induces systemic cytokine production by lung-marginated monocytes. Crit Care Med 2014; 42 (01) e49-e57
  • 39 Gajic O, Dara SI, Mendez JL. et al. Ventilator-associated lung injury in patients without acute lung injury at the onset of mechanical ventilation. Crit Care Med 2004; 32 (09) 1817-1824
  • 40 Gajic O, Frutos-Vivar F, Esteban A, Hubmayr RD, Anzueto A. Ventilator settings as a risk factor for acute respiratory distress syndrome in mechanically ventilated patients. Intensive Care Med 2005; 31 (07) 922-926
  • 41 Tsuno K, Prato P, Kolobow T. Acute lung injury from mechanical ventilation at moderately high airway pressures. J Appl Physiol (1985) 1990; 69 (03) 956-961
  • 42 Kolobow T, Moretti MP, Fumagalli R. et al. Severe impairment in lung function induced by high peak airway pressure during mechanical ventilation. An experimental study. Am Rev Respir Dis 1987; 135 (02) 312-315
  • 43 Kolobow T. Acute respiratory failure. On how to injure healthy lungs (and prevent sick lungs from recovering). ASAIO Trans 1988; 34 (01) 31-34
  • 44 Lumb AB. ed. Diffusion of respiratory gases. In: Nunn's Applied Respiratory Physiology. 7th ed. Churchill Livingstone; 2010
  • 45 Radermacher P, Maggiore SM, Mercat A. Fifty years of research in ARDS. Gas exchange in acute respiratory distress syndrome. Am J Respir Crit Care Med 2017; 196 (08) 964-984
  • 46 Wagner PD, Laravuso RB, Goldzimmer E, Naumann PF, West JB. Distribution of ventilation-perfusion ratios in dogs with normal and abnormal lungs. J Appl Physiol 1975; 38 (06) 1099-1109
  • 47 Fenn WO, Rahn H, Otis AB. A theoretical study of the composition of the alveolar air at altitude. Am J Physiol 1946; 146: 637-653
  • 48 Wagner PD, Laravuso RB, Uhl RR, West JB. Continuous distributions of ventilation-perfusion ratios in normal subjects breathing air and 100 per cent O2. J Clin Invest 1974; 54 (01) 54-68
  • 49 Riley RL, Cournand A. Ideal alveolar air and the analysis of ventilation-perfusion relationships in the lungs. J Appl Physiol 1949; 1 (12) 825-847
  • 50 West JB. State of the art: ventilation-perfusion relationships. Am Rev Respir Dis 1977; 116 (05) 919-943
  • 51 West JB. Understanding pulmonary gas exchange: ventilation-perfusion relationships. Am J Physiol Lung Cell Mol Physiol 2004; 287 (06) L1071-L1072
  • 52 Dantzker DR, Brook CJ, Dehart P, Lynch JP, Weg JG. Ventilation-perfusion distributions in the adult respiratory distress syndrome. Am Rev Respir Dis 1979; 120 (05) 1039-1052
  • 53 West JB, Luks AM. eds. Gas transport by the blood: how gases are moved to and from the peripheral tissues. In: West's Respiratory Physiology: The Essentials. 11th ed. Wolters Kluwer Health; 2016
  • 54 Wagner PD, Saltzman HA, West JB. Measurement of continuous distributions of ventilation-perfusion ratios: theory. J Appl Physiol 1974; 36 (05) 588-599
  • 55 Petersson J, Glenny RW. Gas exchange and ventilation-perfusion relationships in the lung. Eur Respir J 2014; 44 (04) 1023-1041
  • 56 Dantzker DR, Wagner PD, West JB. Instability of lung units with low Va/Q ratios during O2 breathing. J Appl Physiol 1975; 38 (05) 886-895
  • 57 Said SI, Banerjee CM. Venous admixture to the pulmonary circulation in human subjects breathing 100 per cent oxygen. J Clin Invest 1963; 42 (04) 507-515
  • 58 Farhi LE, Rahn H. A theoretical analysis of the alveolar-arterial O2 difference with special reference to the distribution effect. J Appl Physiol 1955; 7 (06) 699-703
  • 59 West JB, Wagner PD. Pulmonary gas exchange. In: West JB, ed. Bioengineering Aspects of the Lung: Dekker, New York; 1977: 361-457
  • 60 Douglas ME, Downs JB, Dannemiller FJ, Hodges MR, Munson ES. Change in pulmonary venous admixture with varying inspired oxygen. Anesth Analg 1976; 55 (05) 688-695
  • 61 Moudgil R, Michelakis ED, Archer SL. Hypoxic pulmonary vasoconstriction. J Appl Physiol (1985) 2005; 98 (01) 390-403
  • 62 Newman JH, Loyd JE, English DK, Ogletree ML, Fulkerson WJ, Brigham KL. Effects of 100% oxygen on lung vascular function in awake sheep. J Appl Physiol 1983; 54 (05) 1379-1386
  • 63 Benatar SR, Hewlett AM, Nunn JF. The use of iso-shunt lines for control of oxygen therapy. Br J Anaesth 1973; 45 (07) 711-718
  • 64 Lumb AB, Slinger P. Hypoxic pulmonary vasoconstriction: physiology and anesthetic implications. Anesthesiology 2015; 122 (04) 932-946
  • 65 Sylvester JT, Shimoda LA, Aaronson PI, Ward JPT. Hypoxic pulmonary vasoconstriction. Physiol Rev 2012; 92 (01) 367-520
  • 66 Rothen HU, Sporre B, Engberg G, Wegenius G, Reber A, Hedenstierna G. Prevention of atelectasis during general anaesthesia. Lancet 1995; 345 (8962): 1387-1391
  • 67 Suter PM, Fairley HB, Schlobohm RM. Shunt, lung volume and perfusion during short periods of ventilation with oxygen. Anesthesiology 1975; 43 (06) 617-627
  • 68 McAslan TC, Matjasko-Chiu J, Turney SZ, Cowley RA. Influence of inhalation of 100 percent oxygen on intrapulmonary shunt in severely traumatized patients. J Trauma 1973; 13 (09) 811-821
  • 69 Karbing DS, Kjærgaard S, Andreassen S, Espersen K, Rees SE. Minimal model quantification of pulmonary gas exchange in intensive care patients. Med Eng Phys 2011; 33 (02) 240-248
  • 70 Karbing DS, Panigada M, Bottino N. et al. Changes in shunt, ventilation/perfusion mismatch, and lung aeration with PEEP in patients with ARDS: a prospective single-arm interventional study. Crit Care 2020; 24 (01) 111
  • 71 Gattinoni L, Caironi P, Cressoni M. et al. Lung recruitment in patients with the acute respiratory distress syndrome. N Engl J Med 2006; 354 (17) 1775-1786
  • 72 Aboab J, Louis B, Jonson B, Brochard L. Relation between PaO2/FIO2 ratio and FIO2: a mathematical description. Intensive Care Med 2006; 32 (10) 1494-1497
  • 73 Karbing DS, Kjaergaard S, Smith BW. et al. Variation in the PaO2/FiO2 ratio with FiO2: mathematical and experimental description, and clinical relevance. Crit Care 2007; 11 (06) R118
  • 74 Gowda MS, Klocke RA. Variability of indices of hypoxemia in adult respiratory distress syndrome. Crit Care Med 1997; 25 (01) 41-45
  • 75 Gilbert R, Auchincloss Jr JH, Kuppinger M, Thomas MV. Stability of the arterial/alveolar oxygen partial pressure ratio. Effects of low ventilation/perfusion regions. Crit Care Med 1979; 7 (06) 267-272
  • 76 Maiolo G, Collino F, Vasques F. et al. Reclassifying acute respiratory distress syndrome. Am J Respir Crit Care Med 2018; 197 (12) 1586-1595
  • 77 Urner M, Jüni P, Hansen B, Wettstein MS, Ferguson ND, Fan E. Time-varying intensity of mechanical ventilation and mortality in patients with acute respiratory failure: a registry-based, prospective cohort study. Lancet Respir Med 2020; 8 (09) 905-913
  • 78 Ruan SY, Huang CT, Chang HT. et al. Construct validity of PaO2/FiO2 ratios in defining acute respiratory distress syndrome. Am J Respir Crit Care Med 2022; 205 (03) 364-366
  • 79 Schumacher RE, Roloff DW, Chapman R, Snedecor S, Bartlett RH. Extracorporeal membrane oxygenation in term newborns. A prospective cost-benefit analysis. ASAIO J 1993; 39 (04) 873-879
  • 80 Ortiz RM, Cilley RE, Bartlett RH. Extracorporeal membrane oxygenation in pediatric respiratory failure. Pediatr Clin North Am 1987; 34 (01) 39-46
  • 81 Trachsel D, McCrindle BW, Nakagawa S, Bohn D. Oxygenation index predicts outcome in children with acute hypoxemic respiratory failure. Am J Respir Crit Care Med 2005; 172 (02) 206-211
  • 82 Dechert RE, Park PK, Bartlett RH. Evaluation of the oxygenation index in adult respiratory failure. J Trauma Acute Care Surg 2014; 76 (02) 469-473
  • 83 Palanidurai S, Phua J, Chan YH, Mukhopadhyay A. P/FP ratio: incorporation of PEEP into the PaO2/FiO2 ratio for prognostication and classification of acute respiratory distress syndrome. Ann Intensive Care 2021; 11 (01) 124
  • 84 Schaefer MS, Loring SH, Talmor D, Baedorf-Kassis EN. Comparison of mechanical power estimations in mechanically ventilated patients with ARDS: a secondary data analysis from the EPVent study. Intensive Care Med 2021; 47 (01) 130-132
  • 85 Caironi P, Carlesso E, Cressoni M. et al. Lung recruitability is better estimated according to the Berlin definition of acute respiratory distress syndrome at standard 5 cm H2O rather than higher positive end-expiratory pressure: a retrospective cohort study. Crit Care Med 2015; 43 (04) 781-790
  • 86 Riviello ED, Kiviri W, Twagirumugabe T. et al. Hospital incidence and outcomes of the acute respiratory distress syndrome using the Kigali Modification of the Berlin definition. Am J Respir Crit Care Med 2016; 193 (01) 52-59
  • 87 Nuckton TJ, Alonso JA, Kallet RH. et al. Pulmonary dead-space fraction as a risk factor for death in the acute respiratory distress syndrome. N Engl J Med 2002; 346 (17) 1281-1286
  • 88 Lucangelo U, Bernabè F, Vatua S. et al. Prognostic value of different dead space indices in mechanically ventilated patients with acute lung injury and ARDS. Chest 2008; 133 (01) 62-71
  • 89 Kallet RH, Zhuo H, Liu KD, Calfee CS, Matthay MA. National Heart Lung and Blood Institute ARDS Network Investigators. The association between physiologic dead-space fraction and mortality in subjects with ARDS enrolled in a prospective multi-center clinical trial. Respir Care 2014; 59 (11) 1611-1618
  • 90 Workman JM, Penman RW, Bromberger-Barnea B, Permutt S, Riley RL. Alveolar dead space, alveolar shunt, and transpulmonary pressure. J Appl Physiol 1965; 20 (05) 816-824
  • 91 Robertson HT. Dead space: the physiology of wasted ventilation. Eur Respir J 2015; 45 (06) 1704-1716
  • 92 Sinha P, Flower O, Soni N. Dead space ventilation: a waste of breath!. Intensive Care Med 2011; 37 (05) 735-746
  • 93 Bohr C. Uber die Lungenathmung. Skand Arch Physiol 1891; 2: 236
  • 94 Enghoff H. Volumen inefficax. Bermekungen zur Frage des shadlichen. Raumes Upsala Lakareforen Forh 1938; 44: 191-218
  • 95 Morales-Quinteros L, Schultz MJ, Bringué J. et al. MARS Consortium. Estimated dead space fraction and the ventilatory ratio are associated with mortality in early ARDS. Ann Intensive Care 2019; 9 (01) 128
  • 96 Doorduin J, Nollet JL, Vugts MPAJ. et al. Assessment of dead-space ventilation in patients with acute respiratory distress syndrome: a prospective observational study. Crit Care 2016; 20 (01) 121
  • 97 Siddiki H, Kojicic M, Li G. et al. Bedside quantification of dead-space fraction using routine clinical data in patients with acute lung injury: secondary analysis of two prospective trials. Crit Care 2010; 14 (04) R141
  • 98 Blanch L, Lucangelo U, Lopez-Aguilar J, Fernandez R, Romero PV. Volumetric capnography in patients with acute lung injury: effects of positive end-expiratory pressure. Eur Respir J 1999; 13 (05) 1048-1054
  • 99 Shimada Y, Yoshiya I, Tanaka K, Sone S, Sakurai M. Evaluation of the progress and prognosis of adult respiratory distress syndrome. Simple respiratory physiologic measurement. Chest 1979; 76 (02) 180-186
  • 100 Fenn WO, Rahn H. Handbook of Physiology. Washington, DC: American Physiological Society; 1964
  • 101 Wexler HR, Lok P. A simple formula for adjusting arterial carbon dioxide tension. Can Anaesth Soc J 1981; 28 (04) 370-372
  • 102 Sinha P, Fauvel NJ, Singh S, Soni N. Ventilatory ratio: a simple bedside measure of ventilation. Br J Anaesth 2009; 102 (05) 692-697
  • 103 Sinha P, Sanders RD, Soni N, Vukoja MK, Gajic O. Acute respiratory distress syndrome: the prognostic value of ventilatory ratio – a simple bedside tool to monitor ventilatory efficiency. Am J Respir Crit Care Med 2013; 187 (10) 1150-1153
  • 104 Sinha P, Calfee CS, Beitler JR. et al. Physiologic analysis and clinical performance of the ventilatory ratio in acute respiratory distress syndrome. Am J Respir Crit Care Med 2019; 199 (03) 333-341
  • 105 Grieco DL, Bongiovanni F, Chen L. et al. Respiratory physiology of COVID-19-induced respiratory failure compared to ARDS of other etiologies. Crit Care 2020; 24 (01) 529
  • 106 Sjoding MW, Admon AJ, Saha AK. et al. Comparing clinical features and outcomes in mechanically ventilated patients with COVID-19 and acute respiratory distress syndrome. Ann Am Thorac Soc 2021; 18 (11) 1876-1885
  • 107 Beloncle F, Studer A, Seegers V. et al. Longitudinal changes in compliance, oxygenation and ventilatory ratio in COVID-19 versus non-COVID-19 pulmonary acute respiratory distress syndrome. Crit Care 2021; 25 (01) 248
  • 108 Torres A, Motos A, Riera J. et al. CIBERESUCICOVID Project (COV20/00110, ISCIII). The evolution of the ventilatory ratio is a prognostic factor in mechanically ventilated COVID-19 ARDS patients. Crit Care 2021; 25 (01) 331
  • 109 Brower RG, Matthay MA, Morris A, Schoenfeld D, Thompson BT, Wheeler A. Acute Respiratory Distress Syndrome Network. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 2000; 342 (18) 1301-1308
  • 110 Fan E, Del Sorbo L, Goligher EC. et al. American Thoracic Society, European Society of Intensive Care Medicine, and Society of Critical Care Medicine. An Official American Thoracic Society/European Society of Intensive Care Medicine/Society of Critical Care Medicine Clinical Practice Guideline: Mechanical ventilation in adult patients with acute respiratory distress syndrome. Am J Respir Crit Care Med 2017; 195 (09) 1253-1263
  • 111 Eichacker PQ, Gerstenberger EP, Banks SM, Cui X, Natanson C. Meta-analysis of acute lung injury and acute respiratory distress syndrome trials testing low tidal volumes. Am J Respir Crit Care Med 2002; 166 (11) 1510-1514
  • 112 Walkey AJ, Goligher EC, Del Sorbo L. et al. Low tidal volume versus non-volume-limited strategies for patients with acute respiratory distress syndrome. A systematic review and meta-analysis. Ann Am Thorac Soc 2017; 14 (04, Supp 4): S271-S279
  • 113 Goligher EC, Costa ELV, Yarnell CJ. et al. Effect of lowering Vt on mortality in acute respiratory distress syndrome varies with respiratory system elastance. Am J Respir Crit Care Med 2021; 203 (11) 1378-1385
  • 114 Serpa Neto A, Cardoso SO, Manetta JA. et al. Association between use of lung-protective ventilation with lower tidal volumes and clinical outcomes among patients without acute respiratory distress syndrome: a meta-analysis. JAMA 2012; 308 (16) 1651-1659
  • 115 Serpa Neto A, Hemmes SN, Barbas CS. et al. PROVE Network Investigators. Protective versus conventional ventilation for surgery: a systematic review and individual patient data meta-analysis. Anesthesiology 2015; 123 (01) 66-78
  • 116 Serpa Neto A, Simonis FD, Barbas CS. et al. Association between tidal volume size, duration of ventilation, and sedation needs in patients without acute respiratory distress syndrome: an individual patient data meta-analysis. Intensive Care Med 2014; 40 (07) 950-957
  • 117 Mascia L, Zavala E, Bosma K. et al. Brain IT Group. High tidal volume is associated with the development of acute lung injury after severe brain injury: an international observational study. Crit Care Med 2007; 35 (08) 1815-1820
  • 118 Ladha K, Vidal Melo MF, McLean DJ. et al. Intraoperative protective mechanical ventilation and risk of postoperative respiratory complications: hospital based registry study. BMJ 2015; 351 (July): h3646
  • 119 Determann RM, Royakkers A, Wolthuis EK. et al. Ventilation with lower tidal volumes as compared with conventional tidal volumes for patients without acute lung injury: a preventive randomized controlled trial. Crit Care 2010; 14 (01) R1
  • 120 Futier E, Constantin JM, Paugam-Burtz C. et al. IMPROVE Study Group. A trial of intraoperative low-tidal-volume ventilation in abdominal surgery. N Engl J Med 2013; 369 (05) 428-437
  • 121 Ely EW, Shintani A, Truman B. et al. Delirium as a predictor of mortality in mechanically ventilated patients in the intensive care unit. JAMA 2004; 291 (14) 1753-1762
  • 122 Simonis FD, Serpa Neto A, Binnekade JM. et al. Writing Group for the PReVENT Investigators. Effect of a low vs intermediate tidal volume strategy on ventilator-free days in intensive care unit patients without ARDS: a randomized clinical trial. JAMA 2018; 320 (18) 1872-1880
  • 123 Hotchkiss Jr JR, Blanch L, Murias G. et al. Effects of decreased respiratory frequency on ventilator-induced lung injury. Am J Respir Crit Care Med 2000; 161 (2, Pt 1): 463-468
  • 124 Rich PB, Douillet CD, Hurd H, Boucher RC. Effect of ventilatory rate on airway cytokine levels and lung injury. J Surg Res 2003; 113 (01) 139-145
  • 125 Protti A, Maraffi T, Milesi M. et al. Role of strain rate in the pathogenesis of ventilator-induced lung edema. Crit Care Med 2016; 44 (09) e838-e845
  • 126 Laffey JG, Bellani G, Pham T. et al. LUNG SAFE Investigators and the ESICM Trials Group. Potentially modifiable factors contributing to outcome from acute respiratory distress syndrome: the LUNG SAFE study. Intensive Care Med 2016; 42 (12) 1865-1876
  • 127 Gattinoni L, Tonetti T, Cressoni M. et al. Ventilator-related causes of lung injury: the mechanical power. Intensive Care Med 2016; 42 (10) 1567-1575
  • 128 Costa ELV, Slutsky AS, Brochard LJ. et al. Ventilatory variables and mechanical power in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med 2021; 204 (03) 303-311
  • 129 Bikker IG, van Bommel J, Reis Miranda D, Bakker J, Gommers D. End-expiratory lung volume during mechanical ventilation: a comparison with reference values and the effect of positive end-expiratory pressure in intensive care unit patients with different lung conditions. Crit Care 2008; 12 (06) R145
  • 130 Patroniti N, Saini M, Zanella A. et al. Measurement of end-expiratory lung volume by oxygen washin-washout in controlled and assisted mechanically ventilated patients. Intensive Care Med 2008; 34 (12) 2235-2240
  • 131 Patroniti N, Bellani G, Manfio A. et al. Lung volume in mechanically ventilated patients: measurement by simplified helium dilution compared to quantitative CT scan. Intensive Care Med 2004; 30 (02) 282-289
  • 132 Gattinoni L, Pesenti A, Bombino M. et al. Relationships between lung computed tomographic density, gas exchange, and PEEP in acute respiratory failure. Anesthesiology 1988; 69 (06) 824-832
  • 133 Gattinoni L, D'Andrea L, Pelosi P, Vitale G, Pesenti A, Fumagalli R. Regional effects and mechanism of positive end-expiratory pressure in early adult respiratory distress syndrome. JAMA 1993; 269 (16) 2122-2127
  • 134 Chiumello D, Marino A, Brioni M. et al. Lung recruitment assessed by respiratory mechanics and computed tomography in patients with acute respiratory distress syndrome. What is the relationship?. Am J Respir Crit Care Med 2016; 193 (11) 1254-1263
  • 135 Gattinoni L, Pesenti A, Avalli L, Rossi F, Bombino M. Pressure-volume curve of total respiratory system in acute respiratory failure. Computed tomographic scan study. Am Rev Respir Dis 1987; 136 (03) 730-736
  • 136 Chiumello D, Cressoni M, Chierichetti M. et al. Nitrogen washout/washin, helium dilution and computed tomography in the assessment of end expiratory lung volume. Crit Care 2008; 12 (06) R150
  • 137 Olegård C, Söndergaard S, Houltz E, Lundin S, Stenqvist O. Estimation of functional residual capacity at the bedside using standard monitoring equipment: a modified nitrogen washout/washin technique requiring a small change of the inspired oxygen fraction. Anesth Analg 2005; 101 (01) 206-212
  • 138 Rezoagli E, Bellani G. How I set up positive end-expiratory pressure: evidence- and physiology-based!. Crit Care 2019; 23 (01) 412
  • 139 Maggiore SM, Jonson B, Richard JC, Jaber S, Lemaire F, Brochard L. Alveolar derecruitment at decremental positive end-expiratory pressure levels in acute lung injury: comparison with the lower inflection point, oxygenation, and compliance. Am J Respir Crit Care Med 2001; 164 (05) 795-801
  • 140 Patroniti N, Bellani G, Cortinovis B. et al. Role of absolute lung volume to assess alveolar recruitment in acute respiratory distress syndrome patients. Crit Care Med 2010; 38 (05) 1300-1307
  • 141 Dellamonica J, Lerolle N, Sargentini C. et al. PEEP-induced changes in lung volume in acute respiratory distress syndrome. Two methods to estimate alveolar recruitment. Intensive Care Med 2011; 37 (10) 1595-1604
  • 142 Chen L, Del Sorbo L, Grieco DL. et al. Potential for lung recruitment estimated by the recruitment-to-inflation ratio in acute respiratory distress syndrome. A clinical trial. Am J Respir Crit Care Med 2020; 201 (02) 178-187
  • 143 Gattinoni L, Caironi P, Pelosi P, Goodman LR. What has computed tomography taught us about the acute respiratory distress syndrome?. Am J Respir Crit Care Med 2001; 164 (09) 1701-1711
  • 144 Gattinoni L, Pesenti A. ARDS: the non-homogeneous lung; facts and hypothesis. Intensive Crit Care Dig 1987; 6: 1-44
  • 145 Gattinoni L, Pesenti A. The concept of “baby lung”. Intensive Care Med 2005; 31 (06) 776-784
  • 146 Gattinoni L, Pesenti A, Baglioni S, Vitale G, Rivolta M, Pelosi P. Inflammatory pulmonary edema and positive end-expiratory pressure: correlations between imaging and physiologic studies. J Thorac Imaging 1988; 3 (03) 59-64
  • 147 Gattinoni L, Pesenti A, Caspani ML. et al. The role of total static lung compliance in the management of severe ARDS unresponsive to conventional treatment. Intensive Care Med 1984; 10 (03) 121-126
  • 148 Grasselli G, Tonetti T, Protti A. et al. Collaborators. Pathophysiology of COVID-19-associated acute respiratory distress syndrome: a multicentre prospective observational study. Lancet Respir Med 2020; 8 (12) 1201-1208
  • 149 Li Bassi G, Suen JY, Dalton HJ. et al. COVID-19 Critical Care Consortium. An appraisal of respiratory system compliance in mechanically ventilated COVID-19 patients. Crit Care 2021; 25 (01) 199
  • 150 Vandenbunder B, Ehrmann S, Piagnerelli M. et al. COVADIS Study Group. Static compliance of the respiratory system in COVID-19 related ARDS: an international multicenter study. Crit Care 2021; 25 (01) 52
  • 151 Hager DN, Krishnan JA, Hayden DL, Brower RG. ARDS Clinical Trials Network. Tidal volume reduction in patients with acute lung injury when plateau pressures are not high. Am J Respir Crit Care Med 2005; 172 (10) 1241-1245
  • 152 Diehl JL, Talmor D. When could airway plateau pressure above 30 cmH2O be acceptable in ARDS patients?. Intensive Care Med 2021; 47 (09) 1028-1031
  • 153 Amato MBP, Meade MO, Slutsky AS. et al. Driving pressure and survival in the acute respiratory distress syndrome. N Engl J Med 2015; 372 (08) 747-755
  • 154 Chiumello D, Carlesso E, Brioni M, Cressoni M. Airway driving pressure and lung stress in ARDS patients. Crit Care 2016; 20: 276
  • 155 Gattinoni L, Carlesso E, Caironi P. Stress and strain within the lung. Curr Opin Crit Care 2012; 18 (01) 42-47
  • 156 Chiumello D, Carlesso E, Cadringher P. et al. Lung stress and strain during mechanical ventilation for acute respiratory distress syndrome. Am J Respir Crit Care Med 2008; 178 (04) 346-355
  • 157 Ranieri VM, Brienza N, Santostasi S. et al. Impairment of lung and chest wall mechanics in patients with acute respiratory distress syndrome: role of abdominal distension. Am J Respir Crit Care Med 1997; 156 (4, Pt 1): 1082-1091
  • 158 Goligher EC, Costa ELV. Reply to Tobin. Am J Respir Crit Care Med 2021; 204 (07) 869-870
  • 159 Henderson WR, Chen L, Amato MBP, Brochard LJ. Fifty years of research in ARDS. Respiratory mechanics in acute respiratory distress syndrome. Am J Respir Crit Care Med 2017; 196 (07) 822-833
  • 160 Teggia-Droghi M, Grassi A, Rezoagli E. et al. Comparison of two approaches to estimate driving pressure during assisted ventilation. Am J Respir Crit Care Med 2020; 202 (11) 1595-1598
  • 161 Bellani G, Grassi A, Sosio S. et al. Driving pressure is associated with outcome during assisted ventilation in acute respiratory distress syndrome. Anesthesiology 2019; 131 (03) 594-604
  • 162 Eissa NT, Ranieri VM, Corbeil C. et al. Analysis of behavior of the respiratory system in ARDS patients: effects of flow, volume, and time. J Appl Physiol (1985) 1991; 70 (06) 2719-2729
  • 163 Pesenti A, Pelosi P, Rossi N, Virtuani A, Brazzi L, Rossi A. The effects of positive end-expiratory pressure on respiratory resistance in patients with the adult respiratory distress syndrome and in normal anesthetized subjects. Am Rev Respir Dis 1991; 144 (01) 101-107
  • 164 Mauri T, Lazzeri M, Bellani G, Zanella A, Grasselli G. Respiratory mechanics to understand ARDS and guide mechanical ventilation. Physiol Meas 2017; 38 (12) R280-H303
  • 165 Brody AW, Dubois AB. Determination of tissue, airway and total resistance to respiration in cats. J Appl Physiol 1956; 9 (02) 213-218
  • 166 Otis AB, McKerrow CB, Bartlett RA. et al. Mechanical factors in distribution of pulmonary ventilation. J Appl Physiol 1956; 8 (04) 427-443
  • 167 D'Angelo E, Calderini E, Torri G, Robatto FM, Bono D, Milic-Emili J. Respiratory mechanics in anesthetized paralyzed humans: effects of flow, volume, and time. J Appl Physiol (1985) 1989; 67 (06) 2556-2564
  • 168 D'Angelo E, Prandi E, Tavola M, Calderini E, Milic-Emili J. Chest wall interrupter resistance in anesthetized paralyzed humans. J Appl Physiol (1985) 1994; 77 (02) 883-887
  • 169 Santini A, Mauri T, Dalla Corte F, Spinelli E, Pesenti A.. Effects of inspiratory flow on lung stress, pendelluft, and ventilation heterogeneity in ARDS: a physiological study. Crit Care 2019; Nov 21; 23 (01) 369 DOI: 10.1186/s13054-019-2641-0.
  • 170 Matthay MA, Folkesson HG, Clerici C. Lung epithelial fluid transport and the resolution of pulmonary edema. Physiol Rev 2002; 82 (03) 569-600
  • 171 Frank JA, Briot R, Lee JW, Ishizaka A, Uchida T, Matthay MA. Physiological and biochemical markers of alveolar epithelial barrier dysfunction in perfused human lungs. Am J Physiol Lung Cell Mol Physiol 2007; 293 (01) L52-L59
  • 172 Sakuma T, Okaniwa G, Nakada T, Nishimura T, Fujimura S, Matthay MA. Alveolar fluid clearance in the resected human lung. Am J Respir Crit Care Med 1994; 150 (02) 305-310
  • 173 Perkins GD, Gao F, Thickett DR. In vivo and in vitro effects of salbutamol on alveolar epithelial repair in acute lung injury. Thorax 2008; 63 (03) 215-220
  • 174 Perkins GD, McAuley DF, Thickett DR, Gao F. The beta-agonist lung injury trial (BALTI): a randomized placebo-controlled clinical trial. Am J Respir Crit Care Med 2006; 173 (03) 281-287
  • 175 Wright PE, Carmichael LC, Bernard GR. Effect of bronchodilators on lung mechanics in the acute respiratory distress syndrome (ARDS). Chest 1994; 106 (05) 1517-1523
  • 176 Junhasavasdikul D, Telias I, Grieco DL. et al. Expiratory flow limitation during mechanical ventilation. Chest 2018; 154 (04) 948-962
  • 177 Koutsoukou A, Armaganidis A, Stavrakaki-Kallergi C. et al. Expiratory flow limitation and intrinsic positive end-expiratory pressure at zero positive end-expiratory pressure in patients with adult respiratory distress syndrome. Am J Respir Crit Care Med 2000; 161 (05) 1590-1596
  • 178 Koutsoukou A, Bekos B, Sotiropoulou C, Koulouris NG, Roussos C, Milic-Emili J. Effects of positive end-expiratory pressure on gas exchange and expiratory flow limitation in adult respiratory distress syndrome. Crit Care Med 2002; 30 (09) 1941-1949
  • 179 Vieillard-Baron A, Prin S, Schmitt JM. et al. Pressure-volume curves in acute respiratory distress syndrome: clinical demonstration of the influence of expiratory flow limitation on the initial slope. Am J Respir Crit Care Med 2002; 165 (08) 1107-1112
  • 180 Laghi F, Goyal A. Auto-PEEP in respiratory failure. Minerva Anestesiol 2012; 78 (02) 201-221
  • 181 Akoumianaki E, Maggiore SM, Valenza F. et al. PLUG Working Group (Acute Respiratory Failure Section of the European Society of Intensive Care Medicine). The application of esophageal pressure measurement in patients with respiratory failure. Am J Respir Crit Care Med 2014; 189 (05) 520-531
  • 182 Talmor D, Sarge T, Malhotra A. et al. Mechanical ventilation guided by esophageal pressure in acute lung injury. N Engl J Med 2008; 359 (20) 2095-2104
  • 183 Baedorf Kassis E, Loring SH, Talmor D. Mortality and pulmonary mechanics in relation to respiratory system and transpulmonary driving pressures in ARDS. Intensive Care Med 2016; 42 (08) 1206-1213
  • 184 Baedorf Kassis E, Loring SH, Talmor D. Should we titrate peep based on end-expiratory transpulmonary pressure?-yes. Ann Transl Med 2018; 6 (19) 390
  • 185 Bugedo G, Retamal J, Bruhn A. Driving pressure: a marker of severity, a safety limit, or a goal for mechanical ventilation?. Crit Care 2017; 21 (01) 199
  • 186 Hubmayr RD. Is there a place for esophageal manometry in the care of patients with injured lungs?. J Appl Physiol (1985) 2010; 108 (03) 481-482
  • 187 Gattinoni L, Chiumello D, Carlesso E, Valenza F. Bench-to-bedside review: chest wall elastance in acute lung injury/acute respiratory distress syndrome patients. Crit Care 2004; 8 (05) 350-355
  • 188 Staffieri F, Stripoli T, De Monte V. et al. Physiological effects of an open lung ventilatory strategy titrated on elastance-derived end-inspiratory transpulmonary pressure: study in a pig model*. Crit Care Med 2012; 40 (07) 2124-2131
  • 189 Mauri T, Yoshida T, Bellani G. et al. PLeUral pressure working Group (PLUG—Acute Respiratory Failure section of the European Society of Intensive Care Medicine). Esophageal and transpulmonary pressure in the clinical setting: meaning, usefulness and perspectives. Intensive Care Med 2016; 42 (09) 1360-1373
  • 190 Yoshida T, Amato MBP, Grieco DL. et al. Esophageal manometry and regional transpulmonary pressure in lung injury. Am J Respir Crit Care Med 2018; 197 (08) 1018-1026
  • 191 Madahar P, Talmor D, Beitler JR. Transpulmonary pressure-guided ventilation to attenuate atelectrauma and hyperinflation in acute lung injury. Am J Respir Crit Care Med 2021; 203 (08) 934-937
  • 192 Wilson TA. Solid mechanics. In: Handbook of Physiology: A Critical, Comprehensive Presentation of Physiological Knowledge and Concepts. American Physiological Society. Baltimore, MD: Waverly; 1986: 35-39
  • 193 Pilkey WD. Formulas for Stress, Strain and Structural Matrices. 2nd ed.. Hoboken, New Jersey: John Wiley & Sons, Inc.; 2005: 89-143
  • 194 Protti A, Votta E, Gattinoni L. Which is the most important strain in the pathogenesis of ventilator-induced lung injury: dynamic or static?. Curr Opin Crit Care 2014; 20 (01) 33-38
  • 195 Liu M, Tanswell AK, Post M. Mechanical force-induced signal transduction in lung cells. Am J Physiol 1999; 277 (04) L667-L683
  • 196 Vlahakis NE, Schroeder MA, Pagano RE, Hubmayr RD. Deformation-induced lipid trafficking in alveolar epithelial cells. Am J Physiol Lung Cell Mol Physiol 2001; 280 (05) L938-L946
  • 197 Pugin J. Molecular mechanisms of lung cell activation induced by cyclic stretch. Crit Care Med 2003; 31 (4, Suppl): S200-S206
  • 198 Cressoni M, Cadringher P, Chiurazzi C. et al. Lung inhomogeneity in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med 2014; 189 (02) 149-158
  • 199 Xin Y, Cereda M, Hamedani H. et al. Unstable inflation causing injury. Insight from prone position and paired computed tomography scans. Am J Respir Crit Care Med 2018; 198 (02) 197-207
  • 200 Protti A, Cressoni M, Santini A. et al. Lung stress and strain during mechanical ventilation: any safe threshold?. Am J Respir Crit Care Med 2011; 183 (10) 1354-1362
  • 201 Protti A, Andreis DT, Monti M. et al. Lung stress and strain during mechanical ventilation: any difference between statics and dynamics?. Crit Care Med 2013; 41 (04) 1046-1055
  • 202 Suki B, Bates JHT. Lung tissue mechanics as an emergent phenomenon. J Appl Physiol (1985) 2011; 110 (04) 1111-1118
  • 203 Brunner JX, Wysocki M. Is there an optimal breath pattern to minimize stress and strain during mechanical ventilation?. Intensive Care Med 2009; 35 (08) 1479-1483
  • 204 Mentzelopoulos SD, Roussos C, Zakynthinos SG. Prone position reduces lung stress and strain in severe acute respiratory distress syndrome. Eur Respir J 2005; 25 (03) 534-544
  • 205 Paula LF, Wellman TJ, Winkler T. et al. Regional tidal lung strain in mechanically ventilated normal lungs. J Appl Physiol (1985) 2016; 121 (06) 1335-1347
  • 206 Chen L, Del Sorbo L, Grieco DL. et al. Airway closure in acute respiratory distress syndrome: an underestimated and misinterpreted phenomenon. Am J Respir Crit Care Med 2018; 197 (01) 132-136
  • 207 Grieco DL, Anzellotti GM, Russo A. et al. Airway closure during surgical pneumoperitoneum in obese patients. Anesthesiology 2019; 131 (01) 58-73
  • 208 Marini JJ, Rocco PRM, Gattinoni L. Static and dynamic contributors to ventilator-induced lung injury in clinical practice. Pressure, energy, and power. Am J Respir Crit Care Med 2020; 201 (07) 767-774
  • 209 Otis AB, Fenn WO, Rahn H. Mechanics of breathing in man. J Appl Physiol 1950; 2 (11) 592-607
  • 210 Rodarte JR, Rehder K. Dynamics of respiration. In: Macklem PT, Mead J, eds. Handbook of Physiology. Baltimore, MD: Williams & Wilkins; 1986: 131-144
  • 211 Marini JJ, Crooke III PS. A general mathematical model for respiratory dynamics relevant to the clinical setting. Am Rev Respir Dis 1993; 147 (01) 14-24
  • 212 Becher T, van der Staay M, Schädler D, Frerichs I, Weiler N. Calculation of mechanical power for pressure-controlled ventilation. Intensive Care Med 2019; 45 (09) 1321-1323
  • 213 van der Meijden S, Molenaar M, Somhorst P, Schoe A. Calculating mechanical power for pressure-controlled ventilation. Intensive Care Med 2019; 45 (10) 1495-1497
  • 214 Serpa Neto A, Deliberato RO, Johnson AEW. et al. PROVE Network Investigators. Mechanical power of ventilation is associated with mortality in critically ill patients: an analysis of patients in two observational cohorts. Intensive Care Med 2018; 44 (11) 1914-1922
  • 215 Schuijt MTU, Schultz MJ, Paulus F, Serpa Neto A. PRoVENT–COVID Collaborative Group. Association of intensity of ventilation with 28-day mortality in COVID-19 patients with acute respiratory failure: insights from the PRoVENT-COVID study. Crit Care 2021; 25 (01) 283
  • 216 Dianti J, Matelski J, Tisminetzky M. et al. Comparing the effects of tidal volume, driving pressure, and mechanical power on mortality in trials of lung-protective mechanical ventilation. Respir Care 2021; 66 (02) 221-227
  • 217 Coppola S, Caccioppola A, Froio S. et al. Effect of mechanical power on intensive care mortality in ARDS patients. Crit Care 2020; 24 (01) 246
  • 218 Collino F, Rapetti F, Vasques F. et al. Positive end-expiratory pressure and mechanical power. Anesthesiology 2019; 130 (01) 119-130
  • 219 Briel M, Meade M, Mercat A. et al. Higher vs lower positive end-expiratory pressure in patients with acute lung injury and acute respiratory distress syndrome: systematic review and meta-analysis. JAMA 2010; 303 (09) 865-873
  • 220 Beitler JR, Walkey AJ. The staying power of pressure- and volume-limited ventilation in acute respiratory distress syndrome. Am J Respir Crit Care Med 2021; 204 (03) 247-249
  • 221 Ranieri VM, Giuliani R, Fiore T, Dambrosio M, Milic-Emili J. Volume-pressure curve of the respiratory system predicts effects of PEEP in ARDS: “occlusion” versus “constant flow” technique. Am J Respir Crit Care Med 1994; 149 (01) 19-27
  • 222 Grasso S, Terragni P, Mascia L. et al. Airway pressure-time curve profile (stress index) detects tidal recruitment/hyperinflation in experimental acute lung injury. Crit Care Med 2004; 32 (04) 1018-1027
  • 223 Grasso S, Stripoli T, De Michele M. et al. ARDSnet ventilatory protocol and alveolar hyperinflation: role of positive end-expiratory pressure. Am J Respir Crit Care Med 2007; 176 (08) 761-767
  • 224 Terragni PP, Filippini C, Slutsky AS. et al. Accuracy of plateau pressure and stress index to identify injurious ventilation in patients with acute respiratory distress syndrome. Anesthesiology 2013; 119 (04) 880-889
  • 225 Gattinoni L, Taccone P, Carlesso E, Marini JJ. Prone position in acute respiratory distress syndrome. Rationale, indications, and limits. Am J Respir Crit Care Med 2013; 188 (11) 1286-1293
  • 226 Gattinoni L, Pelosi P, Vitale G, Pesenti A, D'Andrea L, Mascheroni D. Body position changes redistribute lung computed-tomographic density in patients with acute respiratory failure. Anesthesiology 1991; 74 (01) 15-23
  • 227 Gattinoni L, Pesenti A, Carlesso E. Body position changes redistribute lung computed-tomographic density in patients with acute respiratory failure: impact and clinical fallout through the following 20 years. Intensive Care Med 2013; 39 (11) 1909-1915
  • 228 Bradley CA, Anthonisen NR. Rib cage and abdominal restrictions have different effects on lung mechanics. J Appl Physiol 1980; 49 (06) 946-952
  • 229 Scheidt M, Hyatt RE, Rehder K. Effects of rib cage or abdominal restriction on lung mechanics. J Appl Physiol 1981; 51 (05) 1115-1121
  • 230 Yoshida T, Engelberts D, Otulakowski G. et al. Continuous negative abdominal pressure: mechanism of action and comparison with prone position. J Appl Physiol (1985) 2018; 125 (01) 107-116
  • 231 Rezoagli E, Bastia L, Grassi A. et al. Paradoxical effect of chest wall compression on respiratory system compliance: a multicenter case series of patients with ARDS, with multimodal assessment. Chest 2021; 160 (04) 1335-1339
  • 232 Carteaux G, Tuffet S, Mekontso Dessap A. Potential protective effects of continuous anterior chest compression in the acute respiratory distress syndrome: physiology of an illustrative case. Crit Care 2021; 25 (01) 187
  • 233 Bottino N, Panigada M, Chiumello D. et al. Effects of artificial changes in chest wall compliance on respiratory mechanics and gas exchange in patients with acute lung injury (ALI). Crit Care 2000; 4: 117
  • 234 Samanta S, Samanta S, Soni KD. Supine chest compression: alternative to prone ventilation in acute respiratory distress syndrome. Am J Emerg Med 2014; 32 (05) 489.e5-489.e6
  • 235 Kummer RL, Shapiro RS, Marini JJ, Huelster JS, Leatherman JW. Paradoxically improved respiratory compliance with abdominal compression in COVID-19 ARDS. Chest 2021; 160 (05) 1739-1742
  • 236 Stavi D, Goffi A, Al Shalabi M. et al. The pressure paradox: abdominal compression to detect lung hyper-inflation in COVID-19 ARDS. Am J Respir Crit Care Med 2022; 205 (02) 245-247
  • 237 Keenan JC, Cortes-Puentes GA, Zhang L, Adams AB, Dries DJ, Marini JJ. PEEP titration: the effect of prone position and abdominal pressure in an ARDS model. Intensive Care Med Exp 2018; 6 (01) 3
  • 238 Dellamonica J, Lerolle N, Sargentini C. et al. Effect of different seated positions on lung volume and oxygenation in acute respiratory distress syndrome. Intensive Care Med 2013; 39 (06) 1121-1127
  • 239 Roldán R, Rodriguez S, Barriga F. et al. Sequential lateral positioning as a new lung recruitment maneuver: an exploratory study in early mechanically ventilated Covid-19 ARDS patients. Ann Intensive Care 2022; 12 (01) 13
  • 240 Marini JJ, Gattinoni L. Improving lung compliance by external compression of the chest wall. Crit Care 2021; 25 (01) 264
  • 241 Cereda M, Xin Y, Goffi A. et al. Imaging the injured lung: mechanisms of action and clinical use. Anesthesiology 2019; 131 (03) 716-749
  • 242 Pesenti A, Musch G, Lichtenstein D. et al. Imaging in acute respiratory distress syndrome. Intensive Care Med 2016; 42 (05) 686-698
  • 243 Musch G. New frontiers in functional and molecular imaging of the acutely injured lung: pathophysiological insights and research applications. Front Physiol 2021; 12: 762688
  • 244 Frerichs I, Amato MB, van Kaam AH. et al. TREND Study Group. Chest electrical impedance tomography examination, data analysis, terminology, clinical use and recommendations: consensus statement of the TRanslational EIT developmeNt stuDy group. Thorax 2017; 72 (01) 83-93
  • 245 Biederer J, Mirsadraee S, Beer M. et al. MRI of the lung (3/3)-current applications and future perspectives. Insights Imaging 2012; 3 (04) 373-386
  • 246 Cereda M, Xin Y, Kadlecek S. et al. Hyperpolarized gas diffusion MRI for the study of atelectasis and acute respiratory distress syndrome. NMR Biomed 2014; 27 (12) 1468-1478
  • 247 Lichtenstein DA. Lung ultrasound in the critically ill. Ann Intensive Care 2014; 4 (01) 1
  • 248 Robba C, Wong A, Poole D. et al. European Society of Intensive Care Medicine task force for critical care ultrasonography*. Basic ultrasound head-to-toe skills for intensivists in the general and neuro intensive care unit population: consensus and expert recommendations of the European Society of Intensive Care Medicine. Intensive Care Med 2021; 47 (12) 1347-1367
  • 249 Maddali MV, Churpek M, Pham T. et al. Machine learning clinical-classifier models identify ARDS subphenotypes in observational cohorts and with differential responses to PEEP. Lancet Respir Med 2022; 10 (04) 367-377
  • 250 Constantin JM, Jabaudon M, Lefrant JY. et al. AZUREA Network. Personalised mechanical ventilation tailored to lung morphology versus low positive end-expiratory pressure for patients with acute respiratory distress syndrome in France (the LIVE study): a multicentre, single-blind, randomised controlled trial. Lancet Respir Med 2019; 7 (10) 870-880
  • 251 West JB, Luks AM. eds. Ventilation-perfusion relationships: how matching of gas and blood determines gas exchange. In: West's Respiratory Physiology: The Essentials. 11th ed.. Wolters Kluwer Health; 2020