Der Nuklearmediziner 2018; 41(01): 61-68
DOI: 10.1055/s-0043-121311
Dosimetrie
© Georg Thieme Verlag KG Stuttgart · New York

Dosimetrie beim Schilddrüsenkarzinom

Dosimetry-guided treatment in patients with differentiated thyroid cancer
Kathrin R Pfestroff
1   Klinik für Nuklearmedizin, Universitätsklinikum Marburg, Marburg
,
Frederik A Verburg
1   Klinik für Nuklearmedizin, Universitätsklinikum Marburg, Marburg
,
Michael Lassmann
2   Klinik für Nuklearmedizin, Universitätsklinikum Würzburg, Würzburg
,
Andreas Pfestroff
1   Klinik für Nuklearmedizin, Universitätsklinikum Marburg, Marburg
,
Lothar Schmidt
1   Klinik für Nuklearmedizin, Universitätsklinikum Marburg, Marburg
,
Markus Luster
1   Klinik für Nuklearmedizin, Universitätsklinikum Marburg, Marburg
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
01. März 2018 (online)

Zusammenfassung

Die Radiojodtherapie mit 131I ist ein essenzieller Bestandteil der Behandlung von Patienten mit malignen Schilddrüsenerkrankungen. Die individuelle Dosimetrie ist sowohl prätherapeutisch, um die zu verabreichenden Aktivitäten zu bestimmen, als auch für die Beurteilung der absorbierten Dosen im Tumor bzw. in den Metastasen sowie in „Nicht-Zielorganen“ sinnvoll.

Nationale und internationale Leitlinien empfehlen Methoden und Berechnungsverfahren, die für die Dosimetrie anwendbar sind, aber dem behandelnden Arzt bei der Interpretation der Ergebnisse und der therapeutischen Konsequenz einen Behandlungskorridor bieten. Dieser Artikel gibt einen Überblick über die Grundprinzipien und Methoden der Dosimetrie und zeigt, wie dosimetrische Untersuchungen in der Radiojodtherapie die Behandlung des Schilddrüsenkarzinoms beeinflussen können.

Abstract

Therapy with 131I is an essential component of the treatment of patients with malignant thyroid disease. Individual dosimetry can be performed both pre-therapeutically to determine the activities to be administered as well as intratherapeutically for the assessment of the absorbed doses in the tumor or the metastases as well as in "non-target organs".

National and international guidelines recommend methods for dosimetry and a treatment corridor for the treating physician when interpreting the results. This article gives an overview of the basic principles and methods of dosimetry and shows how dosimetric studies in radioiodine therapy can influence the treatment of the thyroid carcinoma.

 
  • Literatur

  • 1 Luster M, Clarke SE, Dietlein M. et al. Guidelines for radioiodine therapy of differentiated thyroid cancer. Eur J Nucl Med Mol Imaging 2008; 35: 1941-1959
  • 2 Haugen BR, Alexander EK, Bible KC. et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid 2016; 26: 1-133
  • 3 Pacini F, Schlumberger M, Dralle H. et al. European consensus for the management of patients with differentiated thyroid carcinoma of the follicular epithelium. Eur J Endocrinol 2006; 154: 787-803
  • 4 Lassmann M, Hänscheid H, Chiesa C. et al. EANM Dosimetry Committee series on standard operational procedures for pre-therapeutic dosimetry I: blood and bone marrow dosimetry in differentiated thyroid cancer therapy. Eur J Nucl Med Mol Imaging 2008; 35: 1405-1412
  • 5 Dewaraja YK, Ljungberg M, Green AJ. et al. MIRD pamphlet No. 24: Guidelines for quantitative 131I SPECT in dosimetry applications. J Nucl Med 2013; 54: 2182-2188
  • 6 Dewaraja YK, Frey EC, Sgouros G. et al. MIRD Pamphlet No. 23: Quantitative SPECT for Patient-Specific 3-Dimensional Dosimetry in Internal Radionuclide Therapy. J Nucl Med 2012; 53: 1310-1325
  • 7 Siegel JA, Thomas SR, Stubbs JB. et al. MIRD pamphlet no. 16: Techniques for quantitative radiopharmaceutical biodistribution data acquisition and analysis for use in human radiation dose estimates. J Nucl Med 1999; 40: 37s-61s
  • 8 Bardies M, Chatal JF. Absorbed doses for internal radiotherapy from 22 beta-emitting radionuclides: beta dosimetry of small spheres. Phys Med Biol 1994; 39: 961-981
  • 9 Lassmann M, Luster M, Hänscheid H. et al. Impact of 131I diagnostic activities on the biokinetics of thyroid remnants. J Nucl Med 2004; 45: 619-625
  • 10 Maxon HR, Thomas SR, Hertzberg VS. et al. Relation between Effective Radiation-Dose and Outcome of Radioiodine Therapy for Thyroid-Cancer. New Engl J Med 1983; 309: 937-941
  • 11 Dorn R, Kopp J, Vogt H. et al. Dosimetry-guided radioactive iodine treatment in patients with metastatic differentiated thyroid cancer: Largest safe dose using a risk-adapted approach. J of Nucl Med 2003; 44: 451-456
  • 12 Chiesa C, Castellani MR, Vellani C. et al. Individualized dosimetry in the management of metastatic differentiated thyroid cancer. Q J Nucl Med Mol Im 2009; 53: 546-561
  • 13 Flux GD, Haq M, Chittenden SJ. et al. A dose-effect correlation for radioiodine ablation in differentiated thyroid cancer. Eur J Nucl Med Mol I 2010; 37: 270-275
  • 14 Jentzen W, Hoppenbrouwers J, van Leeuwen P. et al. Assessment of Lesion Response in the Initial Radioiodine Treatment of Differentiated Thyroid Cancer Using I-124 PET Imaging. J Nucl Med 2014; 55: 1759-1765
  • 15 Klubo-Gwiezdzinska J, Van Nostrand D, Atkins F. et al. Efficacy of Dosimetric Versus Empiric Prescribed Activity of I-131 for Therapy of Differentiated Thyroid Cancer. J Clin Endocrinol Metab 2011; 96: 3217-3225
  • 16 Benua RS, Cicale NR, Sonenberg M. et al. The relation of radioiodine dosimetry to results and complications in the treatment of metastatic thyroid cancer. Am J Roentgenol Radium Ther Nucl Med 1962; 87: 171-182
  • 17 Tuttle RM, Leboeuf R, Robbins RJ. et al. Empiric radioactive iodine dosing regimens frequently exceed maximum tolerated activity levels in elderly patients with thyroid cancer. Journal of Nuclear Medicine 2006; 47: 1587-1591
  • 18 Kulkarni K, Van Nostrand D, Atkins F. et al. The relative frequency in which empiric dosages of radioiodine would potentially overtreat or undertreat patients who have metastatic well-differentiated thyroid cancer. Thyroid 2006; 16: 1019-1023
  • 19 Menzel C, Grunwald F, Schomburg A. et al. ''High-dose'' radioiodine therapy in advanced differentiated thyroid carcinoma. Journal of Nuclear Medicine 1996; 37: 1496-1503
  • 20 Hänscheid H, Lassmann M, Luster M. et al. Iodine Biokinetics and Dosimetry in Radioiodine Therapy of Thyroid Cancer: Procedures and Results of a Prospective International Controlled Study of Ablation After rhTSH or Hormone Withdrawal. J Nucl Med 2006; 47: 648-654
  • 21 Hartung-Knemeyer V, Nagarajah J, Jentzen W. et al. Pre-therapeutic blood dosimetry in patients with differentiated thyroid carcinoma using 124-iodine: predicted blood doses correlate with changes in blood cell counts after radioiodine therapy and depend on modes of TSH stimulation and number of preceding radioiodine therapies. Annals of nuclear medicine 2012; 26: 723-729
  • 22 Giostra A, Richetta E, Pasquino M. et al. Red marrow and blood dosimetry in I-131 treatment of metastatic thyroid carcinoma: pre-treatment versus in-therapy results. Physics in Medicine and Biology 2016; 61: 4316-4326
  • 23 Verburg FA, Lassmann M, Mader U. et al. The absorbed dose to the blood is a better predictor of ablation success than the administered I-131 activity in thyroid cancer patients. Eur J Nucl Med Mol I 2011; 38: 673-680
  • 24 Kolbert KS, Pentlow KS, Pearson JR. et al. Prediction of absorbed dose to normal organs in thyroid cancer patients treated with I-131 by use of I-124 PET and 3-dimensional internal dosimetry software. J Nucl Med 2007; 48: 143-149
  • 25 Hänscheid H, Lassmann M, Luster M. et al. Blood dosimetry from a single measurement of the whole body radioiodine retention in patients with differentiated thyroid carcinoma. Endocr-Relat Cancer 2009; 16: 1283-1289
  • 26 de Keizer B, Brans B, Hoekstra A. et al. Tumour dosimetry and response in patients with metastatic differentiated thyroid cancer using recombinant human thyrotropin before radioiodine therapy. Eur J Nucl Med Mol I 2003; 30: 367-373
  • 27 Verburg FA, Mader U, Reiners C. et al. Long-Term Survival in Differentiated Thyroid Cancer Is Worse After Low-Activity Initial Post-Surgical I-131 Therapy in Both High- and Low-Risk Patients. J Clin Endocrinol Metabol 2014; 99: 4487-4496
  • 28 Sgouros G, Kolbert KS, Sheikh A. et al. Patient-specific dosimetry for I-131 thyroid cancer therapy using I-124 PET and 3-dimensional-internal dosimetry (3D-ID) software. J Nucl Med 2004; 45: 1366-1372
  • 29 Thies ED, Tanase K, Maeder U. et al. The number of I-131 therapy courses needed to achieve complete remission is an indicator of prognosis in patients with differentiated thyroid carcinoma. Eur J Nucl Med Mol I 2014; 41: 2281-2290
  • 30 Lee JJ, Chung JK, Kim SE. et al. Maximal safe dose of I-131 after failure of standard fixed dose therapy in patients with differentiated thyroid carcinoma. Annals of nuclear medicine 2008; 22: 727-734
  • 31 Verburg FA, Stokkel MPM, Duren C. et al. No survival difference after successful I-131 ablation between patients with initially low-risk and high-risk differentiated thyroid cancer. Eur J Nucl Med Mol I 2010; 37: 276-283
  • 32 Deandreis D, Rubino C, Tala H. et al. Comparison Of Empiric Versus Whole Body/Blood Clearance Dosimetry-Based Approach To Radioactive Iodine Treatment In Patients With Metastases From Differentiated Thyroid Cancer. J Nucl Med 2017; 58: 717-722