Semin Neurol 2023; 43(01): 048-064
DOI: 10.1055/s-0043-1763511
Review Article

Ataxias: Hereditary, Acquired, and Reversible Etiologies

Chi-Ying R. Lin
1   Department of Neurology, Parkinson's Disease Center and Movement Disorders Clinic, Baylor College of Medicine, Houston, Texas
2   Department of Neurology, Alzheimer's Disease and Memory Disorders Center, Baylor College of Medicine, Houston, Texas
,
Sheng-Han Kuo
3   Department of Neurology, College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York
4   Initiative for Columbia Ataxia and Tremor, Columbia University Irving Medical Center, New York, New York
› Author Affiliations
Funding Dr. Kuo has received funding from the National Institutes of Health: NINDS #R01 NS118179 (principal investigator), NINDS #R01 NS104423 (principal investigator), NINDS #R03 NS114871 (principal investigator), Parkinson's Foundation, National Ataxia Foundation, and International Essential Tremor Foundation.

Abstract

A variety of etiologies can cause cerebellar dysfunction, leading to ataxia symptoms. Therefore, the accurate diagnosis of the cause for cerebellar ataxia can be challenging. A step-wise investigation will reveal underlying causes, including nutritional, toxin, immune-mediated, genetic, and degenerative disorders. Recent advances in genetics have identified new genes for both autosomal dominant and autosomal recessive ataxias, and new therapies are on the horizon for targeting specific biological pathways. New diagnostic criteria for degenerative ataxias have been proposed, specifically for multiple system atrophy, which will have a broad impact on the future clinical research in ataxia. In this article, we aim to provide a review focus on symptoms, laboratory testing, neuroimaging, and genetic testing for the diagnosis of cerebellar ataxia causes, with a special emphasis on recent advances. Strategies for the management of cerebellar ataxia is also discussed.

Author Contributions

C.R.L. and S.H.K.: original draft and critical revision of the manuscript.




Publication History

Article published online:
24 February 2023

© 2023. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Kuo SH. Ataxia. Continuum (Minneap Minn) 2019; 25 (04) 1036-1054
  • 2 Morel E, Armand S, Assal F, Allali G. Is frontal gait a myth in normal pressure hydrocephalus?. J Neurol Sci 2019; 402: 175-179
  • 3 Nonnekes J, Růžička E, Serranová T, Reich SG, Bloem BR, Hallett M. Functional gait disorders: a sign-based approach. Neurology 2020; 94 (24) 1093-1099
  • 4 Stolze H, Kuhtz-Buschbeck JP, Drücke H. et al. Gait analysis in idiopathic normal pressure hydrocephalus–which parameters respond to the CSF tap test?. Clin Neurophysiol 2000; 111 (09) 1678-1686
  • 5 Luo L, Wang J, Lo RY. et al. The initial symptom and motor progression in spinocerebellar ataxias. Cerebellum 2017; 16 (03) 615-622
  • 6 Chen ML, Lin CC, Rosenthal LS, Opal P, Kuo SH. Rating scales and biomarkers for CAG-repeat spinocerebellar ataxias: implications for therapy development. J Neurol Sci 2021; 424: 117417
  • 7 Kwei KT, Kuo SH. An overview of the current state and the future of ataxia treatments. Neurol Clin 2020; 38 (02) 449-467
  • 8 Trouillas P, Takayanagi T, Hallett M. et al; The Ataxia Neuropharmacology Committee of the World Federation of Neurology. International Cooperative Ataxia Rating Scale for pharmacological assessment of the cerebellar syndrome. J Neurol Sci 1997; 145 (02) 205-211
  • 9 Schmitz-Hübsch T, Tezenas du Montcel S, Baliko L. et al. Reliability and validity of the International Cooperative Ataxia Rating Scale: a study in 156 spinocerebellar ataxia patients. Mov Disord 2006; 21 (05) 699-704
  • 10 Hoche F, Guell X, Vangel MG, Sherman JC, Schmahmann JD. The cerebellar cognitive affective/Schmahmann syndrome scale. Brain 2018; 141 (01) 248-270
  • 11 Amokrane N, Lin CR, Desai NA, Kuo SH. The impact of compulsivity and impulsivity in cerebellar ataxia: a case series. Tremor Other Hyperkinet Mov (N Y) 2020; 10: 43
  • 12 Amokrane N, Viswanathan A, Freedman S. et al. Impulsivity in cerebellar ataxias: testing the cerebellar reward hypothesis in humans. Mov Disord 2020; 35 (08) 1491-1493
  • 13 Carta I, Chen CH, Schott AL, Dorizan S, Khodakhah K. Cerebellar modulation of the reward circuitry and social behavior. Science 2019; 363 (6424): eaav0581
  • 14 Chen TX, Lin CR, Aumann MA. et al. Impulsivity trait profiles in patients with cerebellar ataxia and parkinson disease. Neurology 2022; 99 (02) e176-e186
  • 15 Heffley W, Song EY, Xu Z. et al. Coordinated cerebellar climbing fiber activity signals learned sensorimotor predictions. Nat Neurosci 2018; 21 (10) 1431-1441
  • 16 Sendhilnathan N, Semework M, Goldberg ME, Ipata AE. Neural correlates of reinforcement learning in mid-lateral cerebellum. Neuron 2020; 106 (06) 1055
  • 17 Wagner MJ, Kim TH, Savall J, Schnitzer MJ, Luo L. Cerebellar granule cells encode the expectation of reward. Nature 2017; 544 (7648): 96-100
  • 18 Schmahmann JD, Pierce S, MacMore J, L'Italien GJ. Development and validation of a patient-reported outcome measure of ataxia. Mov Disord 2021; 36 (10) 2367-2377
  • 19 Mitoma H, Manto M, Hampe CS. Time is cerebellum. Cerebellum 2018; 17 (04) 387-391
  • 20 Dar MS. Ethanol-induced cerebellar ataxia: cellular and molecular mechanisms. Cerebellum 2015; 14 (04) 447-465
  • 21 Luo J. Effects of ethanol on the cerebellum: advances and prospects. Cerebellum 2015; 14 (04) 383-385
  • 22 Victor M, Adams RD, Mancall EL. A restricted form of cerebellar cortical degeneration occurring in alcoholic patients. AMA Arch Neurol 1959; 1 (06) 579-688
  • 23 Haubek A, Lee K. Computed tomography in alcoholic cerebellar atrophy. Neuroradiology 1979; 18 (02) 77-79
  • 24 Mitoma H, Manto M, Shaikh AG. Mechanisms of ethanol-induced cerebellar ataxia: underpinnings of neuronal death in the cerebellum. Int J Environ Res Public Health 2021; 18 (16) 8678
  • 25 Setta F, Jacquy J, Hildebrand J, Manto MU. Ataxia induced by small amounts of alcohol. J Neurol Neurosurg Psychiatry 1998; 65 (03) 370-373
  • 26 Shanmugarajah PD, Hoggard N, Currie S. et al. Alcohol-related cerebellar degeneration: not all down to toxicity?. Cerebellum Ataxias 2016; 3 (01) 17
  • 27 Diener HC, Dichgans J, Bacher M, Guschlbauer B. Improvement of ataxia in alcoholic cerebellar atrophy through alcohol abstinence. J Neurol 1984; 231 (05) 258-262
  • 28 Fein G, Greenstein D. Gait and balance deficits in chronic alcoholics: no improvement from 10 weeks through 1 year abstinence. Alcohol Clin Exp Res 2013; 37 (01) 86-95
  • 29 Sosenko JM, Soto R, Aronson J, Kato M, Caralis PV, Ayyar DR. The prevalence and extent of vibration sensitivity impairment in men with chronic ethanol abuse. J Stud Alcohol 1991; 52 (04) 374-376
  • 30 Sechi G, Serra A. Wernicke's encephalopathy: new clinical settings and recent advances in diagnosis and management. Lancet Neurol 2007; 6 (05) 442-455
  • 31 Desai SD, Shah DS. Atypical Wernicke's syndrome sans encephalopathy with acute bilateral vision loss due to post-chiasmatic optic tract edema. Ann Indian Acad Neurol 2014; 17 (01) 103-105
  • 32 Divya MB, Kubera NS, Jha N, Jha AK, Thabah MM. Atypical neurological manifestations in Wernicke's encephalopathy due to hyperemesis gravidarum. Nutr Neurosci 2022; 25 (10) 2051-2056
  • 33 Lin CY, Yoo JY, Doshi A, Colman R. Clinical reasoning: a 61-year-old man with conjugate gaze deviation, hemiparesis, and asymmetric reflexes. Neurology 2017; 89 (09) e105-e108
  • 34 Jung YC, Chanraud S, Sullivan EV. Neuroimaging of Wernicke's encephalopathy and Korsakoff's syndrome. Neuropsychol Rev 2012; 22 (02) 170-180
  • 35 Ramineni KK, Marupaka SK, Jakkani R, Ingle A. Wernicke encephalopathy with atypical findings on magnetic resonance imaging. Ann Indian Acad Neurol 2018; 21 (04) 328-330
  • 36 Zuccoli G, Santa Cruz D, Bertolini M. et al. MR imaging findings in 56 patients with Wernicke encephalopathy: nonalcoholics may differ from alcoholics. AJNR Am J Neuroradiol 2009; 30 (01) 171-176
  • 37 Kuo SH, Debnam JM, Fuller GN, de Groot J. Wernicke's encephalopathy: an underrecognized and reversible cause of confusional state in cancer patients. Oncology 2009; 76 (01) 10-18
  • 38 Jones KS, Parkington DA, Cox LJ, Koulman A. Erythrocyte transketolase activity coefficient (ETKAC) assay protocol for the assessment of thiamine status. Ann N Y Acad Sci 2021; 1498 (01) 77-84
  • 39 Leigh D, McBurney A, McIlwain H. Erythrocyte transketolase activity in the Wernicke-Korsakoff syndrome. Br J Psychiatry 1981; 139: 153-156
  • 40 Pekovich SR, Martin PR, Singleton CK. Thiamine deficiency decreases steady-state transketolase and pyruvate dehydrogenase but not alpha-ketoglutarate dehydrogenase mRNA levels in three human cell types. J Nutr 1998; 128 (04) 683-687
  • 41 Akhouri S, Kuhn J, Newton EJ. Wernicke-Korsakoff syndrome. In: StatPearls. Treasure Island, FL: StatPearls Publishing; 2022
  • 42 Qudsiya Z, De Jesus O. Subacute combined degeneration of the spinal cord. In: StatPearls. Treasure Island, FL: StatPearls Publishing; 2022
  • 43 Losa R, Sierra MI, Fernández A, Blanco D, Buesa JM. Determination of thiamine and its phosphorylated forms in human plasma, erythrocytes and urine by HPLC and fluorescence detection: a preliminary study on cancer patients. J Pharm Biomed Anal 2005; 37 (05) 1025-1029
  • 44 Lu J, Frank EL. Rapid HPLC measurement of thiamine and its phosphate esters in whole blood. Clin Chem 2008; 54 (05) 901-906
  • 45 Talwar D, Davidson H, Cooney J, St JO'Reilly D. Vitamin B(1) status assessed by direct measurement of thiamin pyrophosphate in erythrocytes or whole blood by HPLC: comparison with erythrocyte transketolase activation assay. Clin Chem 2000; 46 (05) 704-710
  • 46 Wilkins A. Cerebellar dysfunction in multiple sclerosis. Front Neurol 2017; 8: 312
  • 47 Anderson VM, Fisniku LK, Altmann DR, Thompson AJ, Miller DH. MRI measures show significant cerebellar gray matter volume loss in multiple sclerosis and are associated with cerebellar dysfunction. Mult Scler 2009; 15 (07) 811-817
  • 48 Calabrese M, Mattisi I, Rinaldi F. et al. Magnetic resonance evidence of cerebellar cortical pathology in multiple sclerosis. J Neurol Neurosurg Psychiatry 2010; 81 (04) 401-404
  • 49 Kutzelnigg A, Faber-Rod JC, Bauer J. et al. Widespread demyelination in the cerebellar cortex in multiple sclerosis. Brain Pathol 2007; 17 (01) 38-44
  • 50 D'Ambrosio A, Pagani E, Riccitelli GC. et al. Cerebellar contribution to motor and cognitive performance in multiple sclerosis: An MRI sub-regional volumetric analysis. Mult Scler 2017; 23 (09) 1194-1203
  • 51 Fritz NE, Edwards EM, Ye C. et al. Cerebellar contributions to motor and cognitive control in multiple sclerosis✰✰✰ . Arch Phys Med Rehabil 2022; 103 (08) 1592-1599
  • 52 Jaques CS, de Moraes MPM, Silva EAR. et al. Characterisation of ataxia in Sjogren's syndrome. J Neurol Neurosurg Psychiatry 2020; 91 (04) 446-448
  • 53 Chen YW, Lee KC, Chang IW, Chang CS, Hsu SP, Kuo HC. Sjogren's syndrome with acute cerebellar ataxia and massive lymphadenopathy : a case report. Acta Neurol Taiwan 2013; 22 (02) 81-86
  • 54 Chuah SL, Jobli AT, Wan SA, Teh CL. Cerebellar degeneration in primary Sjögren syndrome: a case report. J Med Case Reports 2021; 15 (01) 526
  • 55 Farhat E, Zouari M, Abdelaziz IB. et al. Progressive cerebellar degeneration revealing Primary Sjögren Syndrome: a case report. Cerebellum Ataxias 2016; 3 (01) 18
  • 56 Conway KS, Camelo-Piragua S, Fisher-Hubbard A, Perry WR, Shakkottai VG, Venneti S. Multiple system atrophy pathology is associated with primary Sjögren's syndrome. JCI Insight 2020; 5 (15) e138619
  • 57 Bushara KO, Goebel SU, Shill H, Goldfarb LG, Hallett M. Gluten sensitivity in sporadic and hereditary cerebellar ataxia. Ann Neurol 2001; 49 (04) 540-543
  • 58 Lin CY, Wang MJ, Tse W. et al. Serum antigliadin antibodies in cerebellar ataxias: a systematic review and meta-analysis. J Neurol Neurosurg Psychiatry 2018; 89 (11) 1174-1180
  • 59 Newrick L, Hoggard N, Hadjivassiliou M. Recognition and management of rapid-onset gluten ataxias: case series. Cerebellum Ataxias 2021; 8 (01) 16
  • 60 Benson BC, Mulder CJ, Laczek JT. Anti-gliadin antibodies identify celiac patients overlooked by tissue transglutaminase antibodies. Hawaii J Med Public Health 2013; 72 (9, Suppl 4): 14-17
  • 61 Mitoma H, Hadjivassiliou M, Honnorat J. Guidelines for treatment of immune-mediated cerebellar ataxias. Cerebellum Ataxias 2015; 2 (01) 14
  • 62 Payer J, Petrovic T, Lisy L, Langer P. Hashimoto encephalopathy: a rare intricate syndrome. Int J Endocrinol Metab 2012; 10 (02) 506-514
  • 63 Rao RS, Sheshadri S, Bhattacharjee D, Patil N, Rao K. Progressive non-familial adult onset cerebellar degeneration: an unusual occurrence with Hashimoto's thyroiditis. Psychopharmacol Bull 2018; 48 (03) 42-46
  • 64 Selim M, Drachman DA. Ataxia associated with Hashimoto's disease: progressive non-familial adult onset cerebellar degeneration with autoimmune thyroiditis. J Neurol Neurosurg Psychiatry 2001; 71 (01) 81-87
  • 65 Ferracci F, Moretto G, Candeago RM. et al. Antithyroid antibodies in the CSF: their role in the pathogenesis of Hashimoto's encephalopathy. Neurology 2003; 60 (04) 712-714
  • 66 Nakagawa H, Yoneda M, Fujii A, Kinomoto K, Kuriyama M. Hashimoto's encephalopathy presenting with progressive cerebellar ataxia. J Neurol Neurosurg Psychiatry 2007; 78 (02) 196-197
  • 67 Castillo P, Woodruff B, Caselli R. et al. Steroid-responsive encephalopathy associated with autoimmune thyroiditis. Arch Neurol 2006; 63 (02) 197-202
  • 68 Cornejo R, Venegas P, Goñi D, Salas A, Romero C. Successful response to intravenous immunoglobulin as rescue therapy in a patient with Hashimoto's encephalopathy. BMJ Case Rep 2010; 2010: bcr0920103332
  • 69 Miske R, Hahn S, Rosenkranz T. et al. Autoantibodies against glutamate receptor δ2 after allogenic stem cell transplantation. Neurol Neuroimmunol Neuroinflamm 2016; 3 (04) e255
  • 70 Shiihara T, Kato M, Konno A, Takahashi Y, Hayasaka K. Acute cerebellar ataxia and consecutive cerebellitis produced by glutamate receptor delta2 autoantibody. Brain Dev 2007; 29 (04) 254-256
  • 71 Aly R, Emmady PD. Paraneoplastic cerebellar degeneration. In: StatPearls. Treasure Island, FL: StatPearls Publishing; 2022
  • 72 McKeon A, Tracy JA, Pittock SJ, Parisi JE, Klein CJ, Lennon VA. Purkinje cell cytoplasmic autoantibody type 1 accompaniments: the cerebellum and beyond. Arch Neurol 2011; 68 (10) 1282-1289
  • 73 Rydz D, Lin CY, Xie T, Cortes E, Vonsattel JP, Kuo SH. Pathological findings of anti-Yo cerebellar degeneration with Holmes tremor. J Neurol Neurosurg Psychiatry 2015; 86 (01) 121-122
  • 74 Jarius S, Wildemann B. ‘Medusa head ataxia’: the expanding spectrum of Purkinje cell antibodies in autoimmune cerebellar ataxia. Part 3: anti-Yo/CDR2, anti-Nb/AP3B2, PCA-2, anti-Tr/DNER, other antibodies, diagnostic pitfalls, summary and outlook. J Neuroinflammation 2015; 12 (01) 168
  • 75 Peter E, Do LD, Hannoun S. et al. Cerebellar ataxia with anti-DNER antibodies: outcomes and immunologic features. Neurol Neuroimmunol Neuroinflamm 2022; 9 (05) e200018
  • 76 Dade M, Berzero G, Izquierdo C. et al. Neurological syndromes associated with anti-GAD antibodies. Int J Mol Sci 2020; 21 (10) 3701
  • 77 Joubert B, Belbezier A, Haesebaert J. et al. Long-term outcomes in temporal lobe epilepsy with glutamate decarboxylase antibodies. J Neurol 2020; 267 (07) 2083-2089
  • 78 Malter MP, Helmstaedter C, Urbach H, Vincent A, Bien CG. Antibodies to glutamic acid decarboxylase define a form of limbic encephalitis. Ann Neurol 2010; 67 (04) 470-478
  • 79 Honnorat J, Saiz A, Giometto B. et al. Cerebellar ataxia with anti-glutamic acid decarboxylase antibodies: study of 14 patients. Arch Neurol 2001; 58 (02) 225-230
  • 80 Ariño H, Gresa-Arribas N, Blanco Y. et al. Cerebellar ataxia and glutamic acid decarboxylase antibodies: immunologic profile and long-term effect of immunotherapy. JAMA Neurol 2014; 71 (08) 1009-1016
  • 81 Kuchling J, Shababi-Klein J, Nümann A, Gerischer LM, Harms L, Prüss H. GAD antibody-associated late-onset cerebellar ataxia in two female siblings. Case Rep Neurol 2014; 6 (03) 264-270
  • 82 Saiz A, Blanco Y, Sabater L. et al. Spectrum of neurological syndromes associated with glutamic acid decarboxylase antibodies: diagnostic clues for this association. Brain 2008; 131 (Pt 10): 2553-2563
  • 83 Espay AJ, Chen R. Rigidity and spasms from autoimmune encephalomyelopathies: stiff-person syndrome. Muscle Nerve 2006; 34 (06) 677-690
  • 84 McKeon A, Robinson MT, McEvoy KM. et al. Stiff-man syndrome and variants: clinical course, treatments, and outcomes. Arch Neurol 2012; 69 (02) 230-238
  • 85 Rosin L, DeCamilli P, Butler M. et al. Stiff-man syndrome in a woman with breast cancer: an uncommon central nervous system paraneoplastic syndrome. Neurology 1998; 50 (01) 94-98
  • 86 Silverman IE. Paraneoplastic stiff limb syndrome. J Neurol Neurosurg Psychiatry 1999; 67 (01) 126-127
  • 87 Tanaka H, Matsumura A, Okumura M, Kitaguchi M, Yamamoto S, Iuchi K. Stiff man syndrome with thymoma. Ann Thorac Surg 2005; 80 (02) 739-741
  • 88 Thomas S, Critchley P, Lawden M. et al. Stiff person syndrome with eye movement abnormality, myasthenia gravis, and thymoma. J Neurol Neurosurg Psychiatry 2005; 76 (01) 141-142
  • 89 Dalakas MC, Fujii M, Li M, Lutfi B, Kyhos J, McElroy B. High-dose intravenous immune globulin for stiff-person syndrome. N Engl J Med 2001; 345 (26) 1870-1876
  • 90 Georgieva Z, Parton M. Cerebellar ataxia and epilepsy with anti-GAD antibodies: treatment with IVIG and plasmapheresis. BMJ Case Rep 2014; 2014: bcr2013202314
  • 91 Jones AL, Flanagan EP, Pittock SJ. et al. Responses to and outcomes of treatment of autoimmune cerebellar ataxia in adults. JAMA Neurol 2015; 72 (11) 1304-1312
  • 92 Sawaishi Y, Takada G. Acute cerebellitis. Cerebellum 2002; 1 (03) 223-228
  • 93 Salas AA, Nava A. Acute cerebellar ataxia in childhood: initial approach in the emergency department. Emerg Med J 2010; 27 (12) 956-957
  • 94 Bozzola E, Bozzola M, Tozzi AE. et al. Acute cerebellitis in varicella: a ten year case series and systematic review of the literature. Ital J Pediatr 2014; 40: 57
  • 95 Malayala SV, Jaidev P, Vanaparthy R, Jolly TS. Acute COVID-19 cerebellitis: a rare neurological manifestation of COVID-19 infection. Cureus 2021; 13 (10) e18505
  • 96 O'Neill KA, Polavarapu A. Acute cerebellar ataxia associated with COVID-19 infection in a 5-year-old boy. Child Neurol Open 2021; 8: X211066755
  • 97 Povlow A, Auerbach AJ. Acute cerebellar ataxia in COVID-19 infection: a case report. J Emerg Med 2021; 60 (01) 73-76
  • 98 Tomar LR, Shah DJ, Agarwal U, Batra A, Anand I. Acute post-infectious cerebellar ataxia due to COVID-19. Mov Disord Clin Pract (Hoboken) 2021; 8 (04) 610-612
  • 99 Werner J, Reichen I, Huber M, Abela IA, Weller M, Jelcic I. Subacute cerebellar ataxia following respiratory symptoms of COVID-19: a case report. BMC Infect Dis 2021; 21 (01) 298
  • 100 Altmann K, Koziol K, Palaver A. et al. Cytotoxic edema involving the corpus callosum and middle cerebellar peduncles in a young patient with mild COVID-19. Neurology 2022; (e-pub ahead of print) DOI: 10.1212/WNL.0000000000200816.
  • 101 van Gaalen J, Kerstens FG, Maas RP, Härmark L, van de Warrenburg BP. Drug-induced cerebellar ataxia: a systematic review. CNS Drugs 2014; 28 (12) 1139-1153
  • 102 Gürkov R. Amiodarone: a newly discovered association with bilateral vestibulopathy. Front Neurol 2018; 9: 119
  • 103 Sarrazin S, Hein C, Delrieu J. et al. Amiodarone-induced ataxia: a case report of severe cerebellar dysfunction and review of literature. J Nutr Health Aging 2021; 25 (03) 284-286
  • 104 Belli LS, De Carlis L, Romani F. et al. Dysarthria and cerebellar ataxia: late occurrence of severe neurotoxicity in a liver transplant recipient. Transpl Int 1993; 6 (03) 176-178
  • 105 Kaleyias J, Faerber E, Kothare SV. Tacrolimus induced subacute cerebellar ataxia. Eur J Paediatr Neurol 2006; 10 (02) 86-89
  • 106 Teimouri A, Ahmadi SR, Anavri Ardakani S, Foroughian M. Cyclosporine-A-based immunosuppressive therapy-induced neurotoxicity: a case report. Open Access Emerg Med 2020; 12: 93-97
  • 107 Thompson CB, June CH, Sullivan KM, Thomas ED. Association between cyclosporin neurotoxicity and hypomagnesaemia. Lancet 1984; 2 (8412): 1116-1120
  • 108 Graves TD, Condon M, Loucaidou M, Perry RJ. Reversible metronidazole-induced cerebellar toxicity in a multiple transplant recipient. J Neurol Sci 2009; 285 (1–2): 238-240
  • 109 Woodruff BK, Wijdicks EF, Marshall WF. Reversible metronidazole-induced lesions of the cerebellar dentate nuclei. N Engl J Med 2002; 346 (01) 68-69
  • 110 Hamberg P, De Jong FA, Brandsma D, Verweij J, Sleijfer S. Irinotecan-induced central nervous system toxicity. Report on two cases and review of the literature. Acta Oncol 2008; 47 (05) 974-978
  • 111 Hamberg P, Donders RC, ten Bokkel Huinink D. Central nervous system toxicity induced by irinotecan. J Natl Cancer Inst 2006; 98 (03) 219
  • 112 Vaughn DJ, Jarvik JG, Hackney D, Peters S, Stadtmauer EA. High-dose cytarabine neurotoxicity: MR findings during the acute phase. AJNR Am J Neuroradiol 1993; 14 (04) 1014-1016
  • 113 Adityanjee, Munshi KR, Thampy A. The syndrome of irreversible lithium-effectuated neurotoxicity. Clin Neuropharmacol 2005; 28 (01) 38-49
  • 114 Decker BS, Goldfarb DS, Dargan PI. et al; EXTRIP Workgroup. Extracorporeal treatment for lithium poisoning: systematic review and recommendations from the EXTRIP workgroup. Clin J Am Soc Nephrol 2015; 10 (05) 875-887
  • 115 Moon HJ, Jeon B. Can therapeutic-range chronic phenytoin administration cause cerebellar ataxia?. J Epilepsy Res 2017; 7 (01) 21-24
  • 116 Lin CR, Viswanathan A, Chen TX. et al. Clinicopathological correlates of pyramidal signs in multiple system atrophy. Ann Clin Transl Neurol 2022; 9 (07) 988-994
  • 117 Tu PH, Galvin JE, Baba M. et al. Glial cytoplasmic inclusions in white matter oligodendrocytes of multiple system atrophy brains contain insoluble alpha-synuclein. Ann Neurol 1998; 44 (03) 415-422
  • 118 Revuelta GJ, Benatar M, Freeman A. et al. Clinical subtypes of anterocollis in parkinsonian syndromes. J Neurol Sci 2012; 315 (1–2): 100-103
  • 119 Cortelli P, Calandra-Buonaura G, Benarroch EE. et al. Stridor in multiple system atrophy: consensus statement on diagnosis, prognosis, and treatment. Neurology 2019; 93 (14) 630-639
  • 120 Miki Y, Foti SC, Asi YT. et al. Improving diagnostic accuracy of multiple system atrophy: a clinicopathological study. Brain 2019; 142 (09) 2813-2827
  • 121 Wenning GK, Stankovic I, Vignatelli L. et al. The Movement Disorder Society criteria for the diagnosis of multiple system atrophy. Mov Disord 2022; 37 (06) 1131-1148
  • 122 Gilman S, Wenning GK, Low PA. et al. Second consensus statement on the diagnosis of multiple system atrophy. Neurology 2008; 71 (09) 670-676
  • 123 Koga S, Aoki N, Uitti RJ. et al. When DLB, PD, and PSP masquerade as MSA: an autopsy study of 134 patients. Neurology 2015; 85 (05) 404-412
  • 124 Braune S, Reinhardt M, Schnitzer R, Riedel A, Lücking CH. Cardiac uptake of [123I]MIBG separates Parkinson's disease from multiple system atrophy. Neurology 1999; 53 (05) 1020-1025
  • 125 Donadio V, Incensi A, Rizzo G. et al. Skin biopsy may help to distinguish multiple system atrophy-Parkinsonism from Parkinson's disease with orthostatic hypotension. Mov Disord 2020; 35 (09) 1649-1657
  • 126 Haga R, Sugimoto K, Nishijima H. et al. Clinical utility of skin biopsy in differentiating between Parkinson's disease and multiple system atrophy. Parkinsons Dis 2015; 2015: 167038
  • 127 Shahnawaz M, Mukherjee A, Pritzkow S. et al. Discriminating α-synuclein strains in Parkinson's disease and multiple system atrophy. Nature 2020; 578 (7794): 273-277
  • 128 Eschlböck S, Wenning G, Fanciulli A. Evidence-based treatment of neurogenic orthostatic hypotension and related symptoms. J Neural Transm (Vienna) 2017; 124 (12) 1567-1605
  • 129 Jordan J, Shibao C, Biaggioni I. Multiple system atrophy: using clinical pharmacology to reveal pathophysiology. Clin Auton Res 2015; 25 (01) 53-59
  • 130 Perez-Lloret S, Flabeau O, Fernagut PO. et al. Current concepts in the treatment of multiple system atrophy. Mov Disord Clin Pract (Hoboken) 2015; 2 (01) 6-16
  • 131 Pérez-Lloret S, Quarracino C, Otero-Losada M, Rascol O. Droxidopa for the treatment of neurogenic orthostatic hypotension in neurodegenerative diseases. Expert Opin Pharmacother 2019; 20 (06) 635-645
  • 132 Wenning GK, Colosimo C, Geser F, Poewe W. Multiple system atrophy. Lancet Neurol 2004; 3 (02) 93-103
  • 133 Cortese A, Reilly MM, Houlden H. RFC1 CANVAS / Spectrum Disorder. In: Adam MP, Everman DB, Mirzaa GM. et al., eds. GeneReviews(®). Seattle, WA: University of Washington; Seattle Copyright © 1993–2022; 1993
  • 134 Sullivan R, Yau WY, Chelban V. et al. RFC1-related ataxia is a mimic of early multiple system atrophy. J Neurol Neurosurg Psychiatry 2021; 92 (04) 444-446
  • 135 Leehey MA. Fragile X-associated tremor/ataxia syndrome: clinical phenotype, diagnosis, and treatment. J Investig Med 2009; 57 (08) 830-836
  • 136 Kamm C, Healy DG, Quinn NP. et al; European Multiple System Atrophy Study Group. The fragile X tremor ataxia syndrome in the differential diagnosis of multiple system atrophy: data from the EMSA study group. Brain 2005; 128 (Pt 8): 1855-1860
  • 137 Litvan I, Agid Y, Calne D. et al. Clinical research criteria for the diagnosis of progressive supranuclear palsy (Steele-Richardson-Olszewski syndrome): report of the NINDS-SPSP international workshop. Neurology 1996; 47 (01) 1-9
  • 138 Höglinger GU, Respondek G, Stamelou M. et al; Movement Disorder Society-endorsed PSP Study Group. Clinical diagnosis of progressive supranuclear palsy: the movement disorder society criteria. Mov Disord 2017; 32 (06) 853-864
  • 139 Ishizawa K, Lin WL, Tiseo P, Honer WG, Davies P, Dickson DW. A qualitative and quantitative study of grumose degeneration in progressive supranuclear palsy. J Neuropathol Exp Neurol 2000; 59 (06) 513-524
  • 140 Sawa N, Kataoka H, Kiriyama T. et al. Cerebellar dentate nucleus in progressive supranuclear palsy. Clin Neurol Neurosurg 2014; 118: 32-36
  • 141 Shirota Y, Hamada M, Hanajima R. et al. Cerebellar dysfunction in progressive supranuclear palsy: a transcranial magnetic stimulation study. Mov Disord 2010; 25 (14) 2413-2419
  • 142 Iwasaki Y, Mori K, Ito M, Tatsumi S, Mimuro M, Yoshida M. An autopsied case of progressive supranuclear palsy presenting with cerebellar ataxia and severe cerebellar involvement. Neuropathology 2013; 33 (05) 561-567
  • 143 Kanazawa M, Shimohata T, Toyoshima Y. et al. Cerebellar involvement in progressive supranuclear palsy: a clinicopathological study. Mov Disord 2009; 24 (09) 1312-1318
  • 144 Koga S, Josephs KA, Ogaki K. et al. Cerebellar ataxia in progressive supranuclear palsy: an autopsy study of PSP-C. Mov Disord 2016; 31 (05) 653-662
  • 145 Ando S, Kanazawa M, Onodera O. Progressive supranuclear palsy with predominant cerebellar ataxia. J Mov Disord 2020; 13 (01) 20-26
  • 146 CDC's diagnostic criteria for Creutzfeldt-Jakob disease (CJD). 2018 Accessed February 8, 2023 at: https://www.cdc.gov/prions/cjd/diagnostic-criteria.html
  • 147 Sequeira D, Nihat A, Mok T. et al. Prevalence and treatments of movement disorders in prion diseases: a longitudinal cohort study. Mov Disord 2022; 37 (09) 1893-1903
  • 148 Cooper SA, Murray KL, Heath CA, Will RG, Knight RS. Sporadic Creutzfeldt-Jakob disease with cerebellar ataxia at onset in the UK. J Neurol Neurosurg Psychiatry 2006; 77 (11) 1273-1275
  • 149 Lin CY, Kuo SH. Cerebellar ataxia and hearing impairment. JAMA Neurol 2017; 74 (02) 243-244
  • 150 Waliszewska-Prosół M, Obara K, Szewczyk P, Śniatowska M, Budrewicz S. Cerebellar ataxia as a first manifestation of Creutzfeldt-Jakob disease in two cousins. Postgrad Med J 2018; 94 (1112): 360
  • 151 Heckmann JG, Vachalova I, Vynogradova I, Schwab S. Dressing apraxia as initial manifestation of Creutzfeldt-Jakob disease. Tremor Other Hyperkinet Mov (N Y) 2020; 10: 14
  • 152 Green AJE. RT-QuIC: a new test for sporadic CJD. Pract Neurol 2019; 19 (01) 49-55
  • 153 McGuire LI, Peden AH, Orrú CD. et al. Real time quaking-induced conversion analysis of cerebrospinal fluid in sporadic Creutzfeldt-Jakob disease. Ann Neurol 2012; 72 (02) 278-285
  • 154 Fogel BL, Perlman S. An approach to the patient with late-onset cerebellar ataxia. Nat Clin Pract Neurol 2006; 2 (11) 629-635 , quiz 1, 635
  • 155 van Gaalen J, van de Warrenburg BPC. A practical approach to late-onset cerebellar ataxia: putting the disorder with lack of order into order. Pract Neurol 2012; 12 (01) 14-24
  • 156 Perlman S. Evaluation and Management of Ataxic Disorders: An Overview for Physicians. Minneapolis, MN: National Ataxia Foundation; 2016
  • 157 Klockgether T. Sporadic ataxia with adult onset: classification and diagnostic criteria. Lancet Neurol 2010; 9 (01) 94-104
  • 158 Klockgether T, Schroth G, Diener HC, Dichgans J. Idiopathic cerebellar ataxia of late onset: natural history and MRI morphology. J Neurol Neurosurg Psychiatry 1990; 53 (04) 297-305
  • 159 Tsuji S. Idiopathic late onset cerebellar ataxia (ILOCA), and cerebellar plus syndrome. In: Manto M, Schmahmann JD, Rossi F, Gruol DL, Koibuchi N. eds. Handbook of the Cerebellum and Cerebellar Disorders. Dordrecht: Springer Netherlands; 2013: 2143-2150
  • 160 van Swieten JC, Brusse E, de Graaf BM. et al. A mutation in the fibroblast growth factor 14 gene is associated with autosomal dominant cerebellar ataxia [corrected]. Am J Hum Genet 2003; 72 (01) 191-199
  • 161 Groth CL, Berman BD. Spinocerebellar ataxia 27: a review and characterization of an evolving phenotype. Tremor Other Hyperkinet Mov (N Y) 2018; 8: 534
  • 162 Rafehi H, Read J, Szmulewicz DJ. et al. An intronic GAA repeat expansion in FGF14 causes the autosomal-dominant adult-onset ataxia SCA50/ATX-FGF14. Am J Hum Genet 2023; 110 (01) 105-119
  • 163 Pellerin D, Danzi MC, Wilke C. et al. Deep intronic FGF14 GAA repeat expansion in late-onset cerebellar ataxia. N Engl J Med 2023; 388 (02) 128-141
  • 164 Arkadir D, Louis ED. The balance and gait disorder of essential tremor: what does this mean for patients?. Ther Adv Neurol Disord 2013; 6 (04) 229-236
  • 165 Rao AK, Louis ED. Ataxic gait in essential tremor: a disease-associated feature?. Tremor Other Hyperkinet Mov (N Y) 2019; 9: 9
  • 166 Louis ED, Bares M, Benito-Leon J. et al. Essential tremor-plus: a controversial new concept. Lancet Neurol 2020; 19 (03) 266-270
  • 167 Wu YC, Louis ED, Gionco J, Pan MK, Faust PL, Kuo SH. Increased climbing fiber lateral crossings on purkinje cell dendrites in the cerebellar hemisphere in essential tremor. Mov Disord 2021; 36 (06) 1440-1445
  • 168 Gionco JT, Hartstone WG, Martuscello RT, Kuo SH, Faust PL, Louis ED. Essential tremor versus “ET-plus”: a detailed postmortem study of cerebellar pathology. Cerebellum 2021; 20 (06) 904-912
  • 169 Louis ED, Galecki M, Rao AK. Four essential tremor cases with moderately impaired gait: how impaired can gait be in this disease?. Tremor Other Hyperkinet Mov (N Y) 2013; 3: 3
  • 170 Dowd H, Zdrodowska MA, Radler KH. et al. Prospective longitudinal study of gait and balance in a cohort of elderly essential tremor patients. Front Neurol 2020; 11: 581703
  • 171 Gan SR, Wang J, Figueroa KP. et al. Postural tremor and ataxia progression in spinocerebellar ataxias. Tremor Other Hyperkinet Mov (N Y) 2017; 7: 492
  • 172 Lai RY, Tomishon D, Figueroa KP. et al. Tremor in the degenerative cerebellum: towards the understanding of brain circuitry for tremor. Cerebellum 2019; 18 (03) 519-526
  • 173 Bracchi M, Savoiardo M, Triulzi F. et al. Superficial siderosis of the CNS: MR diagnosis and clinical findings. AJNR Am J Neuroradiol 1993; 14 (01) 227-236
  • 174 Fearnley JM, Stevens JM, Rudge P. Superficial siderosis of the central nervous system. Brain 1995; 118 (Pt 4): 1051-1066
  • 175 Meshkat S, Ebrahimi P, Tafakhori A. et al. Idiopathic superficial siderosis of the central nervous system. Cerebellum Ataxias 2021; 8 (01) 9
  • 176 Demos MK, van Karnebeek CD, Ross CJ. et al; FORGE Canada Consortium. A novel recurrent mutation in ATP1A3 causes CAPOS syndrome. Orphanet J Rare Dis 2014; 9: 15
  • 177 Maas RP, Schieving JH, Schouten M, Kamsteeg EJ, van de Warrenburg BP. The genetic homogeneity of CAPOS syndrome: four new patients with the c.2452G>A (p.Glu818Lys) mutation in the ATP1A3 gene. Pediatr Neurol 2016; 59: 71.e1-75.e1
  • 178 Nicolaides P, Appleton RE, Fryer A. Cerebellar ataxia, areflexia, pes cavus, optic atrophy, and sensorineural hearing loss (CAPOS): a new syndrome. J Med Genet 1996; 33 (05) 419-421
  • 179 Kumar V, Vincent D, Butler JS, Xu Y. Ataxia in long term survivors of lung cancer after whole brain radiation therapy (WBRT). J Clin Oncol 2016; 34 (15_Suppl): e20656
  • 180 Renard D, Collombier L, Castelnovo G, Fourcade G, Debrigode C, Labauge P. Radiation therapy-related ataxia associated with FDG-PET cerebellar hypometabolism. Acta Neurol Belg 2010; 110 (01) 100-102
  • 181 Joaquim AF. Severe cerebellar degeneration and Chiari I malformation - speculative pathophysiology based on a systematic review. Rev Assoc Med Bras 2020; 66 (03) 375-379
  • 182 Gardiner SL, Boogaard MW, Trompet S. et al. Prevalence of carriers of intermediate and pathological polyglutamine disease-associated alleles among large population-based cohorts. JAMA Neurol 2019; 76 (06) 650-656
  • 183 Corral-Juan M, Casquero P, Giraldo-Restrepo N. et al. New spinocerebellar ataxia subtype caused by SAMD9L mutation triggering mitochondrial dysregulation (SCA49). Brain Commun 2022; 4 (02) fcac030
  • 184 Leone M, Bottacchi E, D'Alessandro G, Kustermann S. Hereditary ataxias and paraplegias in Valle d'Aosta, Italy: a study of prevalence and disability. Acta Neurol Scand 1995; 91 (03) 183-187
  • 185 Ruano L, Melo C, Silva MC, Coutinho P. The global epidemiology of hereditary ataxia and spastic paraplegia: a systematic review of prevalence studies. Neuroepidemiology 2014; 42 (03) 174-183
  • 186 van de Warrenburg BP, Sinke RJ, Verschuuren-Bemelmans CC. et al. Spinocerebellar ataxias in the Netherlands: prevalence and age at onset variance analysis. Neurology 2002; 58 (05) 702-708
  • 187 Schöls L, Bauer P, Schmidt T, Schulte T, Riess O. Autosomal dominant cerebellar ataxias: clinical features, genetics, and pathogenesis. Lancet Neurol 2004; 3 (05) 291-304
  • 188 Ashizawa T, Öz G, Paulson HL. Spinocerebellar ataxias: prospects and challenges for therapy development. Nat Rev Neurol 2018; 14 (10) 590-605
  • 189 Klockgether T, Mariotti C, Paulson HL. Spinocerebellar ataxia. Nat Rev Dis Primers 2019; 5 (01) 24
  • 190 Paulson HL, Shakkottai VG, Clark HB, Orr HT. Polyglutamine spinocerebellar ataxias - from genes to potential treatments. Nat Rev Neurosci 2017; 18 (10) 613-626
  • 191 Iwaki A, Kawano Y, Miura S. et al. Heterozygous deletion of ITPR1, but not SUMF1, in spinocerebellar ataxia type 16. J Med Genet 2008; 45 (01) 32-35
  • 192 Misceo D, Fannemel M, Barøy T. et al. SCA27 caused by a chromosome translocation: further delineation of the phenotype. Neurogenetics 2009; 10 (04) 371-374
  • 193 McInnis MG. Anticipation: an old idea in new genes. Am J Hum Genet 1996; 59 (05) 973-979
  • 194 Donis KC, Mattos EP, Silva AA. et al. Infantile spinocerebellar ataxia type 7: case report and a review of the literature. J Neurol Sci 2015; 354 (1–2): 118-121
  • 195 Brooker SM, Edamakanti CR, Akasha SM, Kuo SH, Opal P. Spinocerebellar ataxia clinical trials: opportunities and challenges. Ann Clin Transl Neurol 2021; 8 (07) 1543-1556
  • 196 Yang CY, Lai RY, Amokrane N. et al. Dysphagia in spinocerebellar ataxias type 1, 2, 3 and 6. J Neurol Sci 2020; 415: 116878
  • 197 Figueroa KP, Gan SR, Perlman S. et al. C9orf72 repeat expansions as genetic modifiers for depression in spinocerebellar ataxias. Mov Disord 2018; 33 (03) 497-498
  • 198 Lo RY, Figueroa KP, Pulst SM. et al. Depression and clinical progression in spinocerebellar ataxias. Parkinsonism Relat Disord 2016; 22: 87-92
  • 199 Chen SJ, Lee NC, Chien YH, Hwu WL, Lin CH. Heterogeneous nonataxic phenotypes of spinocerebellar ataxia in a Taiwanese population. Brain Behav 2019; 9 (10) e01414
  • 200 Gwinn-Hardy K, Singleton A, O'Suilleabhain P. et al. Spinocerebellar ataxia type 3 phenotypically resembling parkinson disease in a black family. Arch Neurol 2001; 58 (02) 296-299
  • 201 Kuo MC, Tai CH, Tseng SH, Wu RM. Long-term efficacy of bilateral subthalamic deep brain stimulation in the parkinsonism of SCA 3: a rare case report. Eur J Neurol 2022; 29 (08) 2544-2547
  • 202 Ashizawa T, Figueroa KP, Perlman SL. et al. Clinical characteristics of patients with spinocerebellar ataxias 1, 2, 3 and 6 in the US; a prospective observational study. Orphanet J Rare Dis 2013; 8: 177
  • 203 Jacobi H, Bauer P, Giunti P. et al. The natural history of spinocerebellar ataxia type 1, 2, 3, and 6: a 2-year follow-up study. Neurology 2011; 77 (11) 1035-1041
  • 204 Jacobi H, du Montcel ST, Bauer P. et al. Long-term disease progression in spinocerebellar ataxia types 1, 2, 3, and 6: a longitudinal cohort study. Lancet Neurol 2015; 14 (11) 1101-1108
  • 205 Gan SR, Figueroa KP, Xu HL. et al. The impact of ethnicity on the clinical presentations of spinocerebellar ataxia type 3. Parkinsonism Relat Disord 2020; 72: 37-43
  • 206 Iannuzzelli K, Shi R, Carter R. et al. The association between educational attainment and SCA 3 age of onset and disease course. Parkinsonism Relat Disord 2022; 98: 99-102
  • 207 Choi KD, Choi JH. Episodic ataxias: clinical and genetic features. J Mov Disord 2016; 9 (03) 129-135
  • 208 Garone G, Capuano A, Travaglini L. et al. Clinical and genetic overview of paroxysmal movement disorders and episodic ataxias. Int J Mol Sci 2020; 21 (10) 3603
  • 209 Graves TD, Cha YH, Hahn AF. et al; CINCH Investigators. Episodic ataxia type 1: clinical characterization, quality of life and genotype-phenotype correlation. Brain 2014; 137 (Pt 4): 1009-1018
  • 210 Strupp M, Zwergal A, Brandt T. Episodic ataxia type 2. Neurotherapeutics 2007; 4 (02) 267-273
  • 211 Jen J, Kim GW, Baloh RW. Clinical spectrum of episodic ataxia type 2. Neurology 2004; 62 (01) 17-22
  • 212 Imbrici P, Eunson LH, Graves TD. et al. Late-onset episodic ataxia type 2 due to an in-frame insertion in CACNA1A. Neurology 2005; 65 (06) 944-946
  • 213 Guterman EL, Yurgionas B, Nelson AB. Pearls & Oy-sters: episodic ataxia type 2: case report and review of the literature. Neurology 2016; 86 (23) e239-e241
  • 214 Jen JC, Graves TD, Hess EJ, Hanna MG, Griggs RC, Baloh RW. CINCH investigators. Primary episodic ataxias: diagnosis, pathogenesis and treatment. Brain 2007; 130 (Pt 10): 2484-2493
  • 215 Kotagal V. Acetazolamide-responsive ataxia. Semin Neurol 2012; 32 (05) 533-537
  • 216 Strupp M, Kalla R, Claassen J. et al. A randomized trial of 4-aminopyridine in EA2 and related familial episodic ataxias. Neurology 2011; 77 (03) 269-275
  • 217 Anheim M, Tranchant C, Koenig M. The autosomal recessive cerebellar ataxias. N Engl J Med 2012; 366 (07) 636-646
  • 218 Synofzik M, Németh AH. Recessive ataxias. Handb Clin Neurol 2018; 155: 73-89
  • 219 Synofzik M, Puccio H, Mochel F, Schöls L. Autosomal recessive cerebellar ataxias: paving the way toward targeted molecular therapies. Neuron 2019; 101 (04) 560-583
  • 220 Renaud M, Tranchant C, Martin JVT. et al; RADIAL Working Group. A recessive ataxia diagnosis algorithm for the next generation sequencing era. Ann Neurol 2017; 82 (06) 892-899
  • 221 Beaudin M, Matilla-Dueñas A, Soong BW. et al. The classification of autosomal recessive cerebellar ataxias: a consensus statement from the Society for Research on the Cerebellum and Ataxias Task Force. Cerebellum 2019; 18 (06) 1098-1125
  • 222 Aranca TV, Jones TM, Shaw JD. et al. Emerging therapies in Friedreich's ataxia. Neurodegener Dis Manag 2016; 6 (01) 49-65
  • 223 Zesiewicz TA, Hancock J, Ghanekar SD, Kuo SH, Dohse CA, Vega J. Emerging therapies in Friedreich's ataxia. Expert Rev Neurother 2020; 20 (12) 1215-1228
  • 224 Indelicato E, Nachbauer W, Eigentler A. et al; EFACTS (European Friedreich's Ataxia Consortium for Translational Studies). Onset features and time to diagnosis in Friedreich's ataxia. Orphanet J Rare Dis 2020; 15 (01) 198
  • 225 Bürk K. Friedreich ataxia: current status and future prospects. Cerebellum Ataxias 2017; 4: 4
  • 226 Strawser C, Schadt K, Hauser L. et al. Pharmacological therapeutics in Friedreich ataxia: the present state. Expert Rev Neurother 2017; 17 (09) 895-907
  • 227 Koeppen AH, Qian J, Travis AM, Sossei AB, Feustel PJ, Mazurkiewicz JE. Microvascular pathology in Friedreich cardiomyopathy. Histol Histopathol 2020; 35 (01) 39-46
  • 228 Koeppen AH, Ramirez RL, Becker AB, Feustel PJ, Mazurkiewicz JE. Friedreich ataxia: failure of GABA-ergic and glycinergic synaptic transmission in the dentate nucleus. J Neuropathol Exp Neurol 2015; 74 (02) 166-176
  • 229 Morral JA, Davis AN, Qian J, Gelman BB, Koeppen AH. Pathology and pathogenesis of sensory neuropathy in Friedreich's ataxia. Acta Neuropathol 2010; 120 (01) 97-108
  • 230 Cook A, Giunti P. Friedreich's ataxia: clinical features, pathogenesis and management. Br Med Bull 2017; 124 (01) 19-30
  • 231 Rummey C, Corben LA, Delatycki M. et al. Natural history of Friedreich's ataxia: heterogeneity of neurological progression and consequences for clinical trial design. Neurology 2022; 99 (14) e1499-e1510
  • 232 Cortese A, Simone R, Sullivan R. et al. Biallelic expansion of an intronic repeat in RFC1 is a common cause of late-onset ataxia. Nat Genet 2019; 51 (04) 649-658
  • 233 Currò R, Salvalaggio A, Tozza S. et al. RFC1 expansions are a common cause of idiopathic sensory neuropathy. Brain 2021; 144 (05) 1542-1550
  • 234 Traschütz A, Cortese A, Reich S. et al; RFC1 Study Group. Natural history, phenotypic spectrum, and discriminative features of multisystemic RFC1 disease. Neurology 2021; 96 (09) e1369-e1382
  • 235 Kuo PH, Lo RY, Tanji K, Kuo SH. Clinical reasoning: a 58-year-old man with progressive ptosis and walking difficulty. Neurology 2017; 89 (01) e1-e5
  • 236 Shi H, Waldman G, Tobochnik S, Kuo SH, Pack A. Clinical reasoning: refractory status epilepticus in a primigravida. Neurology 2019; 92 (20) 968-972
  • 237 Chaudhary MW, Al-Baradie RS. Ataxia-telangiectasia: future prospects. Appl Clin Genet 2014; 7: 159-167
  • 238 Lavin MF. Radiosensitivity and oxidative signalling in ataxia telangiectasia: an update. Radiother Oncol 1998; 47 (02) 113-123
  • 239 Byrd PJ, Srinivasan V, Last JI. et al. Severe reaction to radiotherapy for breast cancer as the presenting feature of ataxia telangiectasia. Br J Cancer 2012; 106 (02) 262-268
  • 240 Rothblum-Oviatt C, Wright J, Lefton-Greif MA, McGrath-Morrow SA, Crawford TO, Lederman HM. Ataxia telangiectasia: a review. Orphanet J Rare Dis 2016; 11 (01) 159
  • 241 Bras J, Alonso I, Barbot C. et al. Mutations in PNKP cause recessive ataxia with oculomotor apraxia type 4. Am J Hum Genet 2015; 96 (03) 474-479
  • 242 Paucar M, Malmgren H, Taylor M. et al. Expanding the ataxia with oculomotor apraxia type 4 phenotype. Neurol Genet 2016; 2 (01) e49
  • 243 Coutinho P, Barbot C, Coutinho P. Ataxia with oculomotor apraxia type 1. In: Adam MP, Everman DB, Mirzaa GM. et al., eds. GeneReviews(®). Seattle, WA: University of Washington; Seattle Copyright © 1993–2022; 1993
  • 244 Moreira MC, Koenig M. Ataxia with oculomotor apraxia type 2. In: Adam MP, Everman DB, Mirzaa GM. et al., eds. GeneReviews(®). Seattle, WA: University of Washington; Seattle Copyright © 1993–2022; 1993
  • 245 Patterson M. Niemann-Pick disease type C. In: Adam MP, Everman DB, Mirzaa GM. et al., eds. GeneReviews(®). Seattle, WA: University of Washington; Seattle Copyright © 1993–2022; 1993
  • 246 Gupta DK, Blanco-Palmero VA, Chung WK, Kuo SH. Abnormal vertical eye movements as a clue for diagnosis of Niemann-Pick type C. Tremor Other Hyperkinet Mov (N Y) 2018; 8: 560
  • 247 Orsini A, Valetto A, Bertini V. et al. The best evidence for progressive myoclonic epilepsy: a pathway to precision therapy. Seizure 2019; 71: 247-257
  • 248 Hagerman RJ, Hagerman P. Fragile X-associated tremor/ataxia syndrome - features, mechanisms and management. Nat Rev Neurol 2016; 12 (07) 403-412
  • 249 Fay-Karmon T, Hassin-Baer S. The spectrum of tremor among carriers of the FMR1 premutation with or without the fragile X-associated tremor/ataxia syndrome (FXTAS). Parkinsonism Relat Disord 2019; 65: 32-38
  • 250 Apartis E, Blancher A, Meissner WG. et al. FXTAS: new insights and the need for revised diagnostic criteria. Neurology 2012; 79 (18) 1898-1907
  • 251 Shelton AL, Cornish KM, Godler D, Bui QM, Kolbe S, Fielding J. White matter microstructure, cognition, and molecular markers in fragile X premutation females. Neurology 2017; 88 (22) 2080-2088
  • 252 Dalmau J, Rosenfeld MR. Paraneoplastic syndromes of the CNS. Lancet Neurol 2008; 7 (04) 327-340
  • 253 Hara M, Ariño H, Petit-Pedrol M. et al. DPPX antibody-associated encephalitis: Main syndrome and antibody effects. Neurology 2017; 88 (14) 1340-1348