Thromb Haemost 2023; 123(10): 931-944
DOI: 10.1055/s-0043-1768969
Review Article

Pathophysiological Aspects of COVID-19-Associated Vasculopathic Diseases

Thiemo Greistorfer
1   Division of Angiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
,
Philipp Jud
1   Division of Angiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
› Author Affiliations

Abstract

Since the beginning of coronavirus disease 2019 (COVID-19) pandemic, numerous data reported potential effects on the cardiovascular system due to infection by severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2), which may lead to COVID-19-associated vasculopathies during the acute phase and measurable vascular changes in the convalescent phase. Infection by SARS-CoV-2 seems to have specific direct and indirect effects on the endothelium, immune and coagulation systems thus promoting endothelial dysfunction, immunothrombosis, and formation of neutrophil extracellular traps although the exact mechanisms still need to be elucidated. This review represents a recent update of pathophysiological pathways of the respective three major mechanisms contributing to COVID-19 vasculopathies and vascular changes and includes clinical implications and significance of outcome data.



Publication History

Received: 20 December 2022

Accepted: 19 April 2023

Article published online:
12 May 2023

© 2023. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 World Health Organization. WHO-convened global study of origins of SARS-CoV-2: China part. World Health Organization; 2021. . Accessed April 28, 2023 at: https://www.who.int/publications/i/item/who-convened-global-study-of-origins-of-sars-cov-2-china-part
  • 2 World Health Organization. WHO Coronavirus (COVID-19) Dashboard. World Health Organization. 2022 29.03.2023. Accessed March 31, 2023 at: https://covid19.who.int
  • 3 Candeloro M, Schulman S. Arterial thrombotic events in hospitalized COVID-19 patients: a short review and meta-analysis. Semin Thromb Hemost 2023; 49 (01) 47-54
  • 4 Giryes S, Bragazzi NL, Bridgewood C, De Marco G, McGonagle D. COVID-19 vasculitis and vasculopathy-distinct immunopathology emerging from the close juxtaposition of type II pneumocytes and pulmonary endothelial cells. Semin Immunopathol 2022; 44 (03) 375-390
  • 5 Tufano A, Rendina D, Abate V. et al. Venous thromboembolism in COVID-19 compared to non-COVID-19 cohorts: a systematic review with meta-analysis. J Clin Med 2021; 10 (21) 4925
  • 6 Birnhuber A, Fließer E, Gorkiewicz G. et al. Between inflammation and thrombosis: endothelial cells in COVID-19. Eur Respir J 2021; 58 (03) 2100377
  • 7 Bonaventura A, Vecchié A, Dagna L. et al. Endothelial dysfunction and immunothrombosis as key pathogenic mechanisms in COVID-19. Nat Rev Immunol 2021; 21 (05) 319-329
  • 8 Leppkes M, Knopf J, Naschberger E. et al. Vascular occlusion by neutrophil extracellular traps in COVID-19. EBioMedicine 2020; 58: 102925
  • 9 Nicosia RF, Ligresti G, Caporarello N, Akilesh S, Ribatti D. COVID-19 vasculopathy: mounting evidence for an indirect mechanism of endothelial injury. Am J Pathol 2021; 191 (08) 1374-1384
  • 10 Hoffmann M, Kleine-Weber H, Schroeder S. et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020; 181 (02) 271.e8-280.e8
  • 11 Zhang J, Tecson KM, McCullough PA. Endothelial dysfunction contributes to COVID-19-associated vascular inflammation and coagulopathy. Rev Cardiovasc Med 2020; 21 (03) 315-319
  • 12 Bayati A, Kumar R, Francis V, McPherson PS. SARS-CoV-2 infects cells after viral entry via clathrin-mediated endocytosis. J Biol Chem 2021; 296: 100306
  • 13 Letko M, Marzi A, Munster V. Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nat Microbiol 2020; 5 (04) 562-569
  • 14 Wang H, Yang P, Liu K. et al. SARS coronavirus entry into host cells through a novel clathrin- and caveolae-independent endocytic pathway. Cell Res 2008; 18 (02) 290-301
  • 15 Varga Z, Flammer AJ, Steiger P. et al. Endothelial cell infection and endotheliitis in COVID-19. Lancet 2020; 395 (10234): 1417-1418
  • 16 Dittmayer C, Meinhardt J, Radbruch H. et al. Why misinterpretation of electron micrographs in SARS-CoV-2-infected tissue goes viral. Lancet 2020; 396 (10260): e64-e65
  • 17 Goldsmith CS, Miller SE, Martines RB, Bullock HA, Zaki SR. Electron microscopy of SARS-CoV-2: a challenging task. Lancet 2020; 395 (10238): e99
  • 18 McCracken IR, Saginc G, He L. et al. Lack of evidence of angiotensin-converting enzyme 2 expression and replicative infection by SARS-CoV-2 in human endothelial cells. Circulation 2021; 143 (08) 865-868
  • 19 Schimmel L, Chew KY, Stocks CJ. et al. Endothelial cells are not productively infected by SARS-CoV-2. Clin Transl Immunology 2021; 10 (10) e1350
  • 20 Satturwar S, Fowkes M, Farver C. et al. Postmortem findings associated with SARS-CoV-2: systematic review and meta-analysis. Am J Surg Pathol 2021; 45 (05) 587-603
  • 21 Chen G, Wu D, Guo W. et al. Clinical and immunological features of severe and moderate coronavirus disease 2019. J Clin Invest 2020; 130 (05) 2620-2629
  • 22 Beaulieu LM, Lin E, Mick E. et al. Interleukin 1 receptor 1 and interleukin 1β regulate megakaryocyte maturation, platelet activation, and transcript profile during inflammation in mice and humans. Arterioscler Thromb Vasc Biol 2014; 34 (03) 552-564
  • 23 Cozzolino F, Torcia M, Aldinucci D. et al. Interleukin 1 is an autocrine regulator of human endothelial cell growth. Proc Natl Acad Sci U S A 1990; 87 (17) 6487-6491
  • 24 Wang JM, Sica A, Peri G. et al. Expression of monocyte chemotactic protein and interleukin-8 by cytokine-activated human vascular smooth muscle cells. Arterioscler Thromb 1991; 11 (05) 1166-1174
  • 25 Ambrosino P, Calcaterra IL, Mosella M. et al. Endothelial dysfunction in COVID-19: a unifying mechanism and a potential therapeutic target. Biomedicines 2022; 10 (04) 812
  • 26 Angelini DJ, Hyun SW, Grigoryev DN. et al. TNF-alpha increases tyrosine phosphorylation of vascular endothelial cadherin and opens the paracellular pathway through fyn activation in human lung endothelia. Am J Physiol Lung Cell Mol Physiol 2006; 291 (06) L1232-L1245
  • 27 Desai TR, Leeper NJ, Hynes KL, Gewertz BL. Interleukin-6 causes endothelial barrier dysfunction via the protein kinase C pathway. J Surg Res 2002; 104 (02) 118-123
  • 28 Six I, Guillaume N, Jacob V. et al. The endothelium and COVID-19: an increasingly clear link brief title: endotheliopathy in COVID-19. Int J Mol Sci 2022; 23 (11) 6196
  • 29 Otifi HM, Adiga BK. Endothelial dysfunction in Covid-19 infection. Am J Med Sci 2022; 363 (04) 281-287
  • 30 Smadja DM, Guerin CL, Chocron R. et al. Angiopoietin-2 as a marker of endothelial activation is a good predictor factor for intensive care unit admission of COVID-19 patients. Angiogenesis 2020; 23 (04) 611-620
  • 31 Spadaro S, Fogagnolo A, Campo G. et al. Markers of endothelial and epithelial pulmonary injury in mechanically ventilated COVID-19 ICU patients. Crit Care 2021; 25 (01) 74
  • 32 Akbari H, Tabrizi R, Lankarani KB. et al. The role of cytokine profile and lymphocyte subsets in the severity of coronavirus disease 2019 (COVID-19): a systematic review and meta-analysis. Life Sci 2020; 258: 118167
  • 33 Chang Y, Bai M, You Q. Associations between serum interleukins (IL-1β, IL-2, IL-4, IL-6, IL-8, and IL-10) and disease severity of COVID-19: a systematic review and meta-analysis. BioMed Res Int 2022; 2022: 2755246
  • 34 Hannemann J, Balfanz P, Schwedhelm E. et al. Elevated serum SDMA and ADMA at hospital admission predict in-hospital mortality of COVID-19 patients. Sci Rep 2021; 11 (01) 9895
  • 35 Karacaer C, Yaylaci S, Demirci T. et al. Association of mortality and endothelial dysfunction with serum ADMA level in COVID-19 patients. Pak J Med Sci 2022; 38 (07) 1808-1815
  • 36 Rees CA, Rostad CA, Mantus G. et al. Altered amino acid profile in patients with SARS-CoV-2 infection. Proc Natl Acad Sci U S A 2021; 118 (25) e2101708118
  • 37 Garnier Y, Claude L, Hermand P. et al. Plasma microparticles of intubated COVID-19 patients cause endothelial cell death, neutrophil adhesion and netosis, in a phosphatidylserine-dependent manner. Br J Haematol 2022; 196 (05) 1159-1169
  • 38 Charfeddine S, Ibn Hadj Amor H, Jdidi J. et al. Long COVID 19 syndrome: is it related to microcirculation and endothelial dysfunction? Insights from TUN-EndCOV study. Front Cardiovasc Med 2021; 8: 745758
  • 39 Izzo R, Trimarco V, Mone P. et al. Combining L-arginine with vitamin C improves long-COVID symptoms: the LINCOLN survey. Pharmacol Res 2022; 183: 106360
  • 40 Jud P, Gressenberger P, Muster V. et al. Evaluation of endothelial dysfunction and inflammatory vasculopathy after SARS-CoV-2 infection-a cross-sectional study. Front Cardiovasc Med 2021; 8: 750887
  • 41 Oikonomou E, Souvaliotis N, Lampsas S. et al. Endothelial dysfunction in acute and long standing COVID-19: a prospective cohort study. Vascul Pharmacol 2022; 144: 106975
  • 42 Oliveira MR, Back GD, da Luz Goulart C, Domingos BC, Arena R, Borghi-Silva A. Endothelial function provides early prognostic information in patients with COVID-19: a cohort study. Respir Med 2021; 185: 106469
  • 43 Schnaubelt S, Oppenauer J, Tihanyi D. et al. Arterial stiffness in acute COVID-19 and potential associations with clinical outcome. J Intern Med 2021; 290 (02) 437-443
  • 44 Cristina-Oliveira M, Meireles K, Gil S. et al. Carotid intima-media thickness and flow-mediated dilation do not predict acute in-hospital outcomes in patients hospitalized with COVID-19. Am J Physiol Heart Circ Physiol 2022; 322 (06) H906-H913
  • 45 Jud P, Kessler HH, Brodmann M. Case report: changes of vascular reactivity and arterial stiffness in a patient with Covid-19 infection. Front Cardiovasc Med 2021; 8: 671669
  • 46 Gao YP, Zhou W, Huang PN. et al. Persistent endothelial dysfunction in coronavirus disease-2019 survivors late after recovery. Front Med (Lausanne) 2022; 9: 809033
  • 47 Ambrosino P, Calcaterra I, Molino A. et al. Persistent endothelial dysfunction in post-acute COVID-19 syndrome: a case-control study. Biomedicines 2021; 9 (08) 957
  • 48 Ratchford SM, Stickford JL, Province VM. et al. Vascular alterations among young adults with SARS-CoV-2. Am J Physiol Heart Circ Physiol 2021; 320 (01) H404-H410
  • 49 Riou M, Oulehri W, Momas C. et al. Reduced flow-mediated dilatation is not related to COVID-19 severity three months after hospitalization for SARS-CoV-2 infection. J Clin Med 2021; 10 (06) 1318
  • 50 Lambadiari V, Mitrakou A, Kountouri A. et al. Association of COVID-19 with impaired endothelial glycocalyx, vascular function and myocardial deformation 4 months after infection. Eur J Heart Fail 2021; 23 (11) 1916-1926
  • 51 Szeghy RE, Province VM, Stute NL. et al. Carotid stiffness, intima-media thickness and aortic augmentation index among adults with SARS-CoV-2. Exp Physiol 2022; 107 (07) 694-707
  • 52 Zanoli L, Gaudio A, Mikhailidis DP. et al; Methuselah Study Group. Vascular dysfunction of COVID-19 is partially reverted in the long-term. Circ Res 2022; 130 (09) 1276-1285
  • 53 Chioh FW, Fong SW, Young BE. et al. Convalescent COVID-19 patients are susceptible to endothelial dysfunction due to persistent immune activation. eLife 2021; 10: e64909
  • 54 Fogarty H, Townsend L, Morrin H. et al; Irish COVID-19 Vasculopathy Study (iCVS) investigators. Persistent endotheliopathy in the pathogenesis of long COVID syndrome. J Thromb Haemost 2021; 19 (10) 2546-2553
  • 55 Gianni P, Goldin M, Ngu S, Zafeiropoulos S, Geropoulos G, Giannis D. Complement-mediated microvascular injury and thrombosis in the pathogenesis of severe COVID-19: a review. World J Exp Med 2022; 12 (04) 53-67
  • 56 O'Sullivan JM, Gonagle DM, Ward SE, Preston RJS, O'Donnell JS. Endothelial cells orchestrate COVID-19 coagulopathy. Lancet Haematol 2020; 7 (08) e553-e555
  • 57 Asokananthan N, Graham PT, Fink J. et al. Activation of protease-activated receptor (PAR)-1, PAR-2, and PAR-4 stimulates IL-6, IL-8, and prostaglandin E2 release from human respiratory epithelial cells. J Immunol 2002; 168 (07) 3577-3585
  • 58 Frantzeskaki F, Armaganidis A, Orfanos SE. Immunothrombosis in acute respiratory distress syndrome: cross talks between inflammation and coagulation. Respiration 2017; 93 (03) 212-225
  • 59 Goswami J, MacArthur TA, Sridharan M. et al. A review of pathophysiology, clinical features, and management options of COVID-19 associated coagulopathy. Shock 2021; 55 (06) 700-716
  • 60 Ruf W. New players in the sepsis-protective activated protein C pathway. J Clin Invest 2010; 120 (09) 3084-3087
  • 61 Engelmann B, Massberg S. Thrombosis as an intravascular effector of innate immunity. Nat Rev Immunol 2013; 13 (01) 34-45
  • 62 Jackson SP, Darbousset R, Schoenwaelder SM. Thromboinflammation: challenges of therapeutically targeting coagulation and other host defense mechanisms. Blood 2019; 133 (09) 906-918
  • 63 Thacker VV, Sharma K, Dhar N, Mancini GF, Sordet-Dessimoz J, McKinney JD. Rapid endotheliitis and vascular damage characterize SARS-CoV-2 infection in a human lung-on-chip model. EMBO Rep 2021; 22 (06) e52744
  • 64 Cenko E, Badimon L, Bugiardini R. et al. Cardiovascular disease and COVID-19: a consensus paper from the ESC Working Group on Coronary Pathophysiology & Microcirculation, ESC Working Group on Thrombosis and the Association for Acute CardioVascular Care (ACVC), in collaboration with the European Heart Rhythm Association (EHRA). Cardiovasc Res 2021; 117 (14) 2705-2729
  • 65 Nicolai L, Leunig A, Brambs S. et al. Immunothrombotic dysregulation in COVID-19 pneumonia is associated with respiratory failure and coagulopathy. Circulation 2020; 142 (12) 1176-1189
  • 66 Goshua G, Pine AB, Meizlish ML. et al. Endotheliopathy in COVID-19-associated coagulopathy: evidence from a single-centre, cross-sectional study. Lancet Haematol 2020; 7 (08) e575-e582
  • 67 Juneja GK, Castelo M, Yeh CH. et al; COVID-BEACONS investigators. Biomarkers of coagulation, endothelial function, and fibrinolysis in critically ill patients with COVID-19: A single-center prospective longitudinal study. J Thromb Haemost 2021; 19 (06) 1546-1557
  • 68 Yu HH, Qin C, Chen M, Wang W, Tian DS. D-dimer level is associated with the severity of COVID-19. Thromb Res 2020; 195: 219-225
  • 69 Andrianto, Al-Farabi MJ, Nugraha RA, Marsudi BA, Azmi Y. Biomarkers of endothelial dysfunction and outcomes in coronavirus disease 2019 (COVID-19) patients: a systematic review and meta-analysis. Microvasc Res 2021; 138: 104224
  • 70 Doevelaar AAN, Bachmann M, Hölzer B. et al. von Willebrand factor multimer formation contributes to immunothrombosis in coronavirus disease 2019. Crit Care Med 2021; 49 (05) e512-e520
  • 71 Ward SE, Fogarty H, Karampini E. et al; Irish COVID-19 Vasculopathy Study (iCVS) investigators. ADAMTS13 regulation of VWF multimer distribution in severe COVID-19. J Thromb Haemost 2021; 19 (08) 1914-1921
  • 72 Pascreau T, Zia-Chahabi S, Zuber B, Tcherakian C, Farfour E, Vasse M. ADAMTS 13 deficiency is associated with abnormal distribution of von Willebrand factor multimers in patients with COVID-19. Thromb Res 2021; 204: 138-140
  • 73 Fogarty H, Ward SE, Townsend L. et al; Irish COVID-19 Vasculopathy Study (iCVS) Investigators. Sustained VWF-ADAMTS-13 axis imbalance and endotheliopathy in long COVID syndrome is related to immune dysfunction. J Thromb Haemost 2022; 20 (10) 2429-2438
  • 74 Prasannan N, Heightman M, Hillman T. et al. Impaired exercise capacity in post-COVID-19 syndrome: the role of VWF-ADAMTS13 axis. Blood Adv 2022; 6 (13) 4041-4048
  • 75 Hamzeh-Cognasse H, Mansour A, Reizine F, Mismetti P, Gouin-Thibault I, Cognasse F. Platelet-derived sCD40L: specific inflammatory marker for early-stage severe acute respiratory syndrome coronavirus 2 infection. Virol J 2021; 18 (01) 211
  • 76 Vassiliou AG, Keskinidou C, Jahaj E. et al. ICU admission levels of endothelial biomarkers as predictors of mortality in critically ill COVID-19 patients. Cells 2021; 10 (01) 186
  • 77 Watany MM, Abdou S, Elkolaly R, Elgharbawy N, Hodeib H. Evaluation of admission levels of P, E and L selectins as predictors for thrombosis in hospitalized COVID-19 patients. Clin Exp Med 2022; 22 (04) 567-575
  • 78 Lipcsey M, Persson B, Eriksson O. et al. The outcome of critically ill COVID-19 patients is linked to thromboinflammation dominated by the kallikrein/kinin system. Front Immunol 2021; 12: 627579
  • 79 Sinkovits G, Réti M, Müller V. et al. Associations between the von Willebrand factor-ADAMTS13 axis, complement activation, and COVID-19 severity and mortality. Thromb Haemost 2022; 122 (02) 240-256
  • 80 Kreutz R, Algharably EAE, Azizi M. et al. Hypertension, the renin-angiotensin system, and the risk of lower respiratory tract infections and lung injury: implications for COVID-19. Cardiovasc Res 2020; 116 (10) 1688-1699
  • 81 Pucci F, Annoni F, Dos Santos RAS, Taccone FS, Rooman M. Quantifying renin-angiotensin-system alterations in COVID-19. Cells 2021; 10 (10) 2755
  • 82 Cabrera LE, Pekkarinen PT, Alander M. et al. Characterization of low-density granulocytes in COVID-19. PLoS Pathog 2021; 17 (07) e1009721
  • 83 Denny MF, Yalavarthi S, Zhao W. et al. A distinct subset of proinflammatory neutrophils isolated from patients with systemic lupus erythematosus induces vascular damage and synthesizes type I IFNs. J Immunol 2010; 184 (06) 3284-3297
  • 84 Veras FP, Pontelli MC, Silva CM. et al. SARS-CoV-2-triggered neutrophil extracellular traps mediate COVID-19 pathology. J Exp Med 2020; 217 (12) e20201129
  • 85 Zuo Y, Yalavarthi S, Shi H. et al. Neutrophil extracellular traps in COVID-19. JCI Insight 2020; 5 (11) e138999
  • 86 Englert H, Rangaswamy C, Deppermann C. et al. Defective NET clearance contributes to sustained FXII activation in COVID-19-associated pulmonary thrombo-inflammation. EBioMedicine 2021; 67: 103382
  • 87 Middleton EA, He XY, Denorme F. et al. Neutrophil extracellular traps contribute to immunothrombosis in COVID-19 acute respiratory distress syndrome. Blood 2020; 136 (10) 1169-1179
  • 88 Ng H, Havervall S, Rosell A. et al. Circulating markers of neutrophil extracellular traps are of prognostic value in patients with COVID-19. Arterioscler Thromb Vasc Biol 2021; 41 (02) 988-994
  • 89 Skendros P, Mitsios A, Chrysanthopoulou A. et al. Complement and tissue factor-enriched neutrophil extracellular traps are key drivers in COVID-19 immunothrombosis. J Clin Invest 2020; 130 (11) 6151-6157
  • 90 Manfredi AA, Rovere-Querini P, D'Angelo A, Maugeri N. Low molecular weight heparins prevent the induction of autophagy of activated neutrophils and the formation of neutrophil extracellular traps. Pharmacol Res 2017; 123: 146-156
  • 91 Sidiropoulos K, Viteri G, Sevilla C. et al. Reactome enhanced pathway visualization. Bioinformatics 2017; 33 (21) 3461-3467