Semin Neurol 2023; 43(04): 518-529
DOI: 10.1055/s-0043-1771463
Review Article

Overview of the Gut Microbiome

Lisa Blackmer-Raynolds
1   Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia
,
Timothy R. Sampson
1   Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia
› Institutsangaben

Abstract

The human gastrointestinal tract is home to trillions of microorganisms—collectively referred to as the gut microbiome—that maintain a symbiotic relationship with their host. This diverse community of microbes grows and changes as we do, with developmental, lifestyle, and environmental factors all shaping microbiome community structure. Increasing evidence suggests this relationship is bidirectional, with the microbiome also influencing host physiological processes. For example, changes in the gut microbiome have been shown to alter neurodevelopment and have lifelong effects on the brain and behavior. Age-related changes in gut microbiome composition have also been linked to inflammatory changes in the brain, perhaps increasing susceptibility to neurological disease. Indeed, associations between gut dysbiosis and many age-related neurological diseases—including Parkinson's disease, Alzheimer's disease, multiple sclerosis, and amyotrophic lateral sclerosis—have been reported. Further, microbiome manipulation in animal models of disease highlights a potential role for the gut microbiome in disease development and progression. Although much remains unknown, these associations open up an exciting new world of therapeutic targets, potentially allowing for improved quality of life for a wide range of patient populations.



Publikationsverlauf

Artikel online veröffentlicht:
10. August 2023

© 2023. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Sender R, Fuchs S, Milo R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol 2016; 14 (08) e1002533
  • 2 Leviatan S, Shoer S, Rothschild D, Gorodetski M, Segal E. An expanded reference map of the human gut microbiome reveals hundreds of previously unknown species. Nat Commun 2022; 13 (01) 3863
  • 3 Qin J, Li R, Raes J. et al; MetaHIT Consortium. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 2010; 464 (7285) 59-65
  • 4 Scepanovic P, Hodel F, Mondot S. et al; Milieu Intérieur Consortium. A comprehensive assessment of demographic, environmental, and host genetic associations with gut microbiome diversity in healthy individuals. Microbiome 2019; 7 (01) 130
  • 5 Donaldson GP, Lee SM, Mazmanian SK. Gut biogeography of the bacterial microbiota. Nat Rev Microbiol 2016; 14 (01) 20-32
  • 6 Albenberg L, Esipova TV, Judge CP. et al. Correlation between intraluminal oxygen gradient and radial partitioning of intestinal microbiota. Gastroenterology 2014; 147 (05) 1055-63.e8
  • 7 Berry D, Stecher B, Schintlmeister A. et al. Host-compound foraging by intestinal microbiota revealed by single-cell stable isotope probing. Proc Natl Acad Sci U S A 2013; 110 (12) 4720-4725
  • 8 Png CW, Lindén SK, Gilshenan KS. et al. Mucolytic bacteria with increased prevalence in IBD mucosa augment in vitro utilization of mucin by other bacteria. Am J Gastroenterol 2010; 105 (11) 2420-2428
  • 9 Jiménez E, Marín ML, Martín R. et al. Is meconium from healthy newborns actually sterile?. Res Microbiol 2008; 159 (03) 187-193
  • 10 Collado MC, Rautava S, Aakko J, Isolauri E, Salminen S. Human gut colonisation may be initiated in utero by distinct microbial communities in the placenta and amniotic fluid. Sci Rep 2016; 6 (01) 23129
  • 11 Aagaard K, Ma J, Antony KM, Ganu R, Petrosino J, Versalovic J. The placenta harbors a unique microbiome. Sci Transl Med 2014; 6 (237) 237ra65
  • 12 DiGiulio DB. Diversity of microbes in amniotic fluid. Semin Fetal Neonatal Med 2012; 17 (01) 2-11
  • 13 Zheng J, Xiao X, Zhang Q, Mao L, Yu M, Xu J. The placental microbiome varies in association with low birth weight in full-term neonates. Nutrients 2015; 7 (08) 6924-6937
  • 14 Perez-Muñoz ME, Arrieta MC, Ramer-Tait AE, Walter J. A critical assessment of the “sterile womb” and “in utero colonization” hypotheses: implications for research on the pioneer infant microbiome. Microbiome 2017; 5 (01) 48
  • 15 Lauder AP, Roche AM, Sherrill-Mix S. et al. Comparison of placenta samples with contamination controls does not provide evidence for a distinct placenta microbiota. Microbiome 2016; 4 (01) 29
  • 16 Briana DD, Papaevangelou V, Malamitsi-Puchner A. The jury is still out on the existence of a placental microbiome. Acta Paediatr 2021; 110 (11) 2958-2963
  • 17 Koren O, Goodrich JK, Cullender TC. et al. Host remodeling of the gut microbiome and metabolic changes during pregnancy. Cell 2012; 150 (03) 470-480
  • 18 Dominguez-Bello MG, Costello EK, Contreras M. et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci U S A 2010; 107 (26) 11971-11975
  • 19 Chu DM, Ma J, Prince AL, Antony KM, Seferovic MD, Aagaard KM. Maturation of the infant microbiome community structure and function across multiple body sites and in relation to mode of delivery. Nat Med 2017; 23 (03) 314-326
  • 20 Hill CJ, Lynch DB, Murphy K. et al. Evolution of gut microbiota composition from birth to 24 weeks in the INFANTMET cohort. Microbiome 2017; 5 (01) 4
  • 21 Ward RE, Niñonuevo M, Mills DA, Lebrilla CB, German JB. In vitro fermentation of breast milk oligosaccharides by Bifidobacterium infantis and Lactobacillus gasseri . Appl Environ Microbiol 2006; 72 (06) 4497-4499
  • 22 Chambers SA, Townsend SD. Bioorthogonal human milk oligosaccharide probes for antimicrobial target identification within Streptococcus agalactiae . Carbohydr Res 2020; 488: 107895
  • 23 Ackerman DL, Doster RS, Weitkamp JH, Aronoff DM, Gaddy JA, Townsend SD. Human milk oligosaccharides exhibit antimicrobial and antibiofilm properties against group B Streptococcus . ACS Infect Dis 2017; 3 (08) 595-605
  • 24 Ackerman DL, Craft KM, Doster RS. et al. Antimicrobial and antibiofilm activity of human milk oligosaccharides against Streptococcus agalactiae, Staphylococcus aureus, and Acinetobacter baumannii . ACS Infect Dis 2018; 4 (03) 315-324
  • 25 Pannaraj PS, Li F, Cerini C. et al. Association between breast milk bacterial communities and establishment and development of the infant gut microbiome. JAMA Pediatr 2017; 171 (07) 647-654
  • 26 Bäckhed F, Roswall J, Peng Y. et al. Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe 2015; 17 (05) 690-703
  • 27 Milani C, Duranti S, Bottacini F. et al. The first microbial colonizers of the human gut: composition, activities, and health implications of the infant gut microbiota. Microbiol Mol Biol Rev 2017; 81 (04) e00036-e17
  • 28 Claesson MJ, Cusack S, O'Sullivan O. et al. Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proc Natl Acad Sci U S A 2011; 108 (Suppl. 01) 4586-4591
  • 29 O'Toole PW, Jeffery IB. Gut microbiota and aging. Science 2015; 350 (6265) 1214-1215
  • 30 Mariat D, Firmesse O, Levenez F. et al. The Firmicutes/Bacteroidetes ratio of the human microbiota changes with age. BMC Microbiol 2009; 9 (01) 123
  • 31 Kong F, Hua Y, Zeng B, Ning R, Li Y, Zhao J. Gut microbiota signatures of longevity. Curr Biol 2016; 26 (18) R832-R833
  • 32 Biagi E, Franceschi C, Rampelli S. et al. Gut microbiota and extreme longevity. Curr Biol 2016; 26 (11) 1480-1485
  • 33 Faith JJ, Guruge JL, Charbonneau M. et al. The long-term stability of the human gut microbiota. Science 2013; 341 (6141) 1237439
  • 34 Fassarella M, Blaak EE, Penders J, Nauta A, Smidt H, Zoetendal EG. Gut microbiome stability and resilience: elucidating the response to perturbations in order to modulate gut health. Gut 2021; 70 (03) 595-605
  • 35 David LA, Maurice CF, Carmody RN. et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 2014; 505 (7484) 559-563
  • 36 Carmody RN, Gerber GK, Luevano Jr JM. et al. Diet dominates host genotype in shaping the murine gut microbiota. Cell Host Microbe 2015; 17 (01) 72-84
  • 37 Hildebrandt MA, Hoffmann C, Sherrill-Mix SA. et al. High-fat diet determines the composition of the murine gut microbiome independently of obesity. Gastroenterology 2009; 137 (05) 1716-24.e1 , 2
  • 38 Marlow G, Ellett S, Ferguson IR. et al. Transcriptomics to study the effect of a Mediterranean-inspired diet on inflammation in Crohn's disease patients. Hum Genomics 2013; 7 (01) 24
  • 39 Gur TL, Shay L, Palkar AV. et al. Prenatal stress affects placental cytokines and neurotrophins, commensal microbes, and anxiety-like behavior in adult female offspring. Brain Behav Immun 2017; 64: 50-58
  • 40 Zijlmans MA, Korpela K, Riksen-Walraven JM, de Vos WM, de Weerth C. Maternal prenatal stress is associated with the infant intestinal microbiota. Psychoneuroendocrinology 2015; 53: 233-245
  • 41 Golubeva AV, Crampton S, Desbonnet L. et al. Prenatal stress-induced alterations in major physiological systems correlate with gut microbiota composition in adulthood. Psychoneuroendocrinology 2015; 60: 58-74
  • 42 Knowles SR, Nelson EA, Palombo EA. Investigating the role of perceived stress on bacterial flora activity and salivary cortisol secretion: a possible mechanism underlying susceptibility to illness. Biol Psychol 2008; 77 (02) 132-137
  • 43 Galley JD, Yu Z, Kumar P, Dowd SE, Lyte M, Bailey MT. The structures of the colonic mucosa-associated and luminal microbial communities are distinct and differentially affected by a prolonged murine stressor. Gut Microbes 2014; 5 (06) 748-760
  • 44 Bharwani A, Mian MF, Foster JA, Surette MG, Bienenstock J, Forsythe P. Structural & functional consequences of chronic psychosocial stress on the microbiome & host. Psychoneuroendocrinology 2016; 63: 217-227
  • 45 Gautam A, Kumar R, Chakraborty N. et al. Altered fecal microbiota composition in all male aggressor-exposed rodent model simulating features of post-traumatic stress disorder. J Neurosci Res 2018; 96 (07) 1311-1323
  • 46 Bailey MT, Dowd SE, Galley JD, Hufnagle AR, Allen RG, Lyte M. Exposure to a social stressor alters the structure of the intestinal microbiota: implications for stressor-induced immunomodulation. Brain Behav Immun 2011; 25 (03) 397-407
  • 47 Mailing LJ, Allen JM, Buford TW, Fields CJ, Woods JA. Exercise and the gut microbiome: a review of the evidence, potential mechanisms, and implications for human health. Exerc Sport Sci Rev 2019; 47 (02) 75-85
  • 48 Matsumoto M, Inoue R, Tsukahara T. et al. Voluntary running exercise alters microbiota composition and increases n-butyrate concentration in the rat cecum. Biosci Biotechnol Biochem 2008; 72 (02) 572-576
  • 49 Estaki M, Pither J, Baumeister P. et al. Cardiorespiratory fitness as a predictor of intestinal microbial diversity and distinct metagenomic functions. Microbiome 2016; 4 (01) 42
  • 50 Evans CC, LePard KJ, Kwak JW. et al. Exercise prevents weight gain and alters the gut microbiota in a mouse model of high fat diet-induced obesity. PLoS One 2014; 9 (03) e92193
  • 51 Bressa C, Bailén-Andrino M, Pérez-Santiago J. et al. Differences in gut microbiota profile between women with active lifestyle and sedentary women. PLoS One 2017; 12 (02) e0171352
  • 52 Tan J, McKenzie C, Potamitis M, Thorburn AN, Mackay CR, Macia L. The role of short-chain fatty acids in health and disease. Adv Immunol 2014; 121 (121) 91-119
  • 53 Dalile B, Van Oudenhove L, Vervliet B, Verbeke K. The role of short-chain fatty acids in microbiota-gut-brain communication. Nat Rev Gastroenterol Hepatol 2019; 16 (08) 461-478
  • 54 Allen JM, Mailing LJ, Niemiro GM. et al. Exercise alters gut microbiota composition and function in lean and obese humans. Med Sci Sports Exerc 2018; 50 (04) 747-757
  • 55 Schwartz DJ, Langdon AE, Dantas G. Understanding the impact of antibiotic perturbation on the human microbiome. Genome Med 2020; 12 (01) 82
  • 56 Jernberg C, Löfmark S, Edlund C, Jansson JK. Long-term ecological impacts of antibiotic administration on the human intestinal microbiota. ISME J 2007; 1 (01) 56-66
  • 57 Jakobsson HE, Jernberg C, Andersson AF, Sjölund-Karlsson M, Jansson JK, Engstrand L. Short-term antibiotic treatment has differing long-term impacts on the human throat and gut microbiome. PLoS One 2010; 5 (03) e9836
  • 58 Dethlefsen L, Huse S, Sogin ML, Relman DA. The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing. PLoS Biol 2008; 6 (11) e280
  • 59 Dethlefsen L, Relman DA. Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc Natl Acad Sci U S A 2011; 108 (Suppl. 01) 4554-4561
  • 60 Ferrer M, Méndez-García C, Rojo D, Barbas C, Moya A. Antibiotic use and microbiome function. Biochem Pharmacol 2017; 134: 114-126
  • 61 Cryan JF, O'Riordan KJ, Cowan CSM. et al. The microbiota-gut-brain axis. Physiol Rev 2019; 99 (04) 1877-2013
  • 62 Braniste V, Al-Asmakh M, Kowal C. et al. The gut microbiota influences blood-brain barrier permeability in mice. Sci Transl Med 2014; 6 (263) 263ra158
  • 63 Thion MS, Low D, Silvin A. et al. Microbiome influences prenatal and adult microglia in a sex-specific manner. Cell 2018; 172 (03) 500-516.e16
  • 64 Vuong HE, Pronovost GN, Williams DW. et al. The maternal microbiome modulates fetal neurodevelopment in mice. Nature 2020; 586 (7828) 281-286
  • 65 Aversa Z, Atkinson EJ, Schafer MJ. et al. Association of infant antibiotic exposure with childhood health outcomes. Mayo Clin Proc 2021; 96 (01) 66-77
  • 66 Vuong HE, Yano JM, Fung TC, Hsiao EY. The microbiome and host behavior. Annu Rev Neurosci 2017; 40 (01) 21-49
  • 67 Erny D, Hrabě de Angelis AL, Jaitin D. et al. Host microbiota constantly control maturation and function of microglia in the CNS. Nat Neurosci 2015; 18 (07) 965-977
  • 68 Matcovitch-Natan O, Winter DR, Giladi A. et al. Microglia development follows a stepwise program to regulate brain homeostasis. Science 2016; 353 (6301) aad8670
  • 69 Bercik P, Denou E, Collins J. et al. The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice. Gastroenterology 2011; 141 (02) 599-609 , 609.e1–609.e3
  • 70 Neufeld KM, Kang N, Bienenstock J, Foster JA. Reduced anxiety-like behavior and central neurochemical change in germ-free mice. Neurogastroenterol Motil 2011; 23 (03) 255-264 , e119
  • 71 Clarke G, Grenham S, Scully P. et al. The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Mol Psychiatry 2013; 18 (06) 666-673
  • 72 Diaz Heijtz R, Wang S, Anuar F. et al. Normal gut microbiota modulates brain development and behavior. Proc Natl Acad Sci U S A 2011; 108 (07) 3047-3052
  • 73 Zuo L, Prather ER, Stetskiv M. et al. Inflammaging and oxidative stress in human diseases: from molecular mechanisms to novel treatments. Int J Mol Sci 2019; 20 (18) 4472
  • 74 Clark RI, Salazar A, Yamada R. et al. Distinct shifts in microbiota composition during drosophila aging impair intestinal function and drive mortality. Cell Rep 2015; 12 (10) 1656-1667
  • 75 Fransen F, van Beek AA, Borghuis T. et al. Aged gut microbiota contributes to systemical inflammaging after transfer to germ-free mice. Front Immunol 2017; 8: 1385
  • 76 Thevaranjan N, Puchta A, Schulz C. et al. Age-associated microbial dysbiosis promotes intestinal permeability, systemic inflammation, and macrophage dysfunction. Cell Host Microbe 2017; 21 (04) 455-466.e4
  • 77 Smith P, Willemsen D, Popkes M. et al. Regulation of life span by the gut microbiota in the short-lived African turquoise killifish. eLife 2017; 6: e27014
  • 78 Bárcena C, Valdés-Mas R, Mayoral P. et al. Healthspan and lifespan extension by fecal microbiota transplantation into progeroid mice. Nat Med 2019; 25 (08) 1234-1242
  • 79 Fang P, Kazmi SA, Jameson KG, Hsiao EY. The microbiome as a modifier of neurodegenerative disease risk. Cell Host Microbe 2020; 28 (02) 201-222
  • 80 Kalia LV, Lang AE. Parkinson's disease. Lancet 2015; 386 (9996) 896-912
  • 81 Braak H, de Vos RA, Bohl J, Del Tredici K. Gastric alpha-synuclein immunoreactive inclusions in Meissner's and Auerbach's plexuses in cases staged for Parkinson's disease-related brain pathology. Neurosci Lett 2006; 396 (01) 67-72
  • 82 Keshavarzian A, Green SJ, Engen PA. et al. Colonic bacterial composition in Parkinson's disease. Mov Disord 2015; 30 (10) 1351-1360
  • 83 Scheperjans F, Aho V, Pereira PA. et al. Gut microbiota are related to Parkinson's disease and clinical phenotype. Mov Disord 2015; 30 (03) 350-358
  • 84 Tan AH, Lim SY, Lang AE. The microbiome-gut-brain axis in Parkinson disease - from basic research to the clinic. Nat Rev Neurol 2022; 18 (08) 476-495
  • 85 Nishiwaki H, Ito M, Ishida T. et al. Meta-analysis of gut dysbiosis in Parkinson's disease. Mov Disord 2020; 35 (09) 1626-1635
  • 86 Romano S, Savva GM, Bedarf JR, Charles IG, Hildebrand F, Narbad A. Meta-analysis of the Parkinson's disease gut microbiome suggests alterations linked to intestinal inflammation. NPJ Parkinsons Dis 2021; 7 (01) 27
  • 87 Toh TS, Chong CW, Lim SY. et al. Gut microbiome in Parkinson's disease: new insights from meta-analysis. Parkinsonism Relat Disord 2022; 94: 1-9
  • 88 Wallen ZD, Demirkan A, Twa G. et al. Metagenomics of Parkinson's disease implicates the gut microbiome in multiple disease mechanisms. Nat Commun 2022; 13 (01) 6958
  • 89 Chandra S, Sisodia SS, Vassar RJ. The gut microbiome in Alzheimer's disease: what we know and what remains to be explored. Mol Neurodegener 2023; 18 (01) 9
  • 90 Hung CC, Chang CC, Huang CW, Nouchi R, Cheng CH. Gut microbiota in patients with Alzheimer's disease spectrum: a systematic review and meta-analysis. Aging (Albany NY) 2022; 14 (01) 477-496
  • 91 Ling Z, Zhu M, Yan X. et al. Structural and functional dysbiosis of fecal microbiota in Chinese patients with Alzheimer's disease. Front Cell Dev Biol 2021; 8: 634069
  • 92 Liu P, Wu L, Peng G. et al. Altered microbiomes distinguish Alzheimer's disease from amnestic mild cognitive impairment and health in a Chinese cohort. Brain Behav Immun 2019; 80: 633-643
  • 93 Vogt NM, Kerby RL, Dill-McFarland KA. et al. Gut microbiome alterations in Alzheimer's disease. Sci Rep 2017; 7 (01) 13537
  • 94 Zhuang ZQ, Shen LL, Li WW. et al. Gut microbiota is altered in patients with Alzheimer's disease. J Alzheimers Dis 2018; 63 (04) 1337-1346
  • 95 Cattaneo A, Cattane N, Galluzzi S. et al; INDIA-FBP Group. Association of brain amyloidosis with pro-inflammatory gut bacterial taxa and peripheral inflammation markers in cognitively impaired elderly. Neurobiol Aging 2017; 49: 60-68
  • 96 Correale J, Hohlfeld R, Baranzini SE. The role of the gut microbiota in multiple sclerosis. Nat Rev Neurol 2022; 18 (09) 544-558
  • 97 Berer K, Gerdes LA, Cekanaviciute E. et al. Gut microbiota from multiple sclerosis patients enables spontaneous autoimmune encephalomyelitis in mice. Proc Natl Acad Sci USA 2017; 114 (40) 10719-10724
  • 98 Cekanaviciute E, Yoo BB, Runia TF. et al. Gut bacteria from multiple sclerosis patients modulate human T cells and exacerbate symptoms in mouse models. Proc Natl Acad Sci U S A 2017; 114 (40) 10713-10718
  • 99 Jangi S, Gandhi R, Cox LM. et al. Alterations of the human gut microbiome in multiple sclerosis. Nat Commun 2016; 7 (01) 12015
  • 100 Cantarel BL, Waubant E, Chehoud C. et al. Gut microbiota in multiple sclerosis: possible influence of immunomodulators. J Investig Med 2015; 63 (05) 729-734
  • 101 Ling Z, Cheng Y, Yan X. et al. Alterations of the fecal microbiota in Chinese patients with multiple sclerosis. Front Immunol 2020; 11: 590783
  • 102 Miyake S, Kim S, Suda W. et al. Dysbiosis in the gut microbiota of patients with multiple sclerosis, with a striking depletion of species belonging to Clostridia XIVa and IV clusters. PLoS One 2015; 10 (09) e0137429
  • 103 Chen J, Chia N, Kalari KR. et al. Multiple sclerosis patients have a distinct gut microbiota compared to healthy controls. Sci Rep 2016; 6 (01) 28484
  • 104 Blacher E, Bashiardes S, Shapiro H. et al. Potential roles of gut microbiome and metabolites in modulating ALS in mice. Nature 2019; 572 (7770) 474-480
  • 105 Fang X, Wang X, Yang S. et al. Evaluation of the microbial diversity in amyotrophic lateral sclerosis using high-throughput sequencing. Front Microbiol 2016; 7: 1479
  • 106 Zeng Q, Shen J, Chen K. et al. The alteration of gut microbiome and metabolism in amyotrophic lateral sclerosis patients. Sci Rep 2020; 10 (01) 12998
  • 107 Zhai CD, Zheng JJ, An BC, Huang HF, Tan ZC. Intestinal microbiota composition in patients with amyotrophic lateral sclerosis: establishment of bacterial and archaeal communities analyses. Chin Med J (Engl) 2019; 132 (15) 1815-1822
  • 108 Brenner D, Hiergeist A, Adis C. et al. The fecal microbiome of ALS patients. Neurobiol Aging 2018; 61: 132-137
  • 109 Yap CX, Henders AK, Alvares GA. et al. Autism-related dietary preferences mediate autism-gut microbiome associations. Cell 2021; 184 (24) 5916-5931.e17
  • 110 Sampson TR, Debelius JW, Thron T. et al. Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson's disease. Cell 2016; 167 (06) 1469-1480.e12
  • 111 Choi JG, Kim N, Ju IG. et al. Oral administration of Proteus mirabilis damages dopaminergic neurons and motor functions in mice. Sci Rep 2018; 8 (01) 1275
  • 112 Chen SG, Stribinskis V, Rane MJ. et al. Exposure to the functional bacterial amyloid protein curli enhances alpha-synuclein aggregation in aged Fischer 344 rats and Caenorhabditis elegans . Sci Rep 2016; 6 (01) 34477
  • 113 Sampson TR, Challis C, Jain N. et al. A gut bacterial amyloid promotes α-synuclein aggregation and motor impairment in mice. eLife 2020; 9: e53111
  • 114 Matheoud D, Cannon T, Voisin A. et al. Intestinal infection triggers Parkinson's disease-like symptoms in Pink1-/- mice. Nature 2019; 571 (7766) 565-569
  • 115 Kishimoto Y, Zhu W, Hosoda W, Sen JM, Mattson MP. Chronic Mild Gut Inflammation Accelerates Brain Neuropathology and Motor Dysfunction in α-Synuclein Mutant Mice. Neuromolecular Med 2019; 21 (03) 239-249
  • 116 Dodiya HB, Kuntz T, Shaik SM. et al. Sex-specific effects of microbiome perturbations on cerebral Aβ amyloidosis and microglia phenotypes. J Exp Med 2019; 216 (07) 1542-1560
  • 117 Dodiya HB, Lutz HL, Weigle IQ. et al. Gut microbiota-driven brain Aβ amyloidosis in mice requires microglia. J Exp Med 2022; 219 (01) e20200895
  • 118 Mezö C, Dokalis N, Mossad O. et al. Different effects of constitutive and induced microbiota modulation on microglia in a mouse model of Alzheimer's disease. Acta Neuropathol Commun 2020; 8 (01) 119
  • 119 Minter MR, Zhang C, Leone V. et al. Antibiotic-induced perturbations in gut microbial diversity influences neuro-inflammation and amyloidosis in a murine model of Alzheimer's disease. Sci Rep 2016; 6: 30028
  • 120 Minter MR, Hinterleitner R, Meisel M. et al. Antibiotic-induced perturbations in microbial diversity during post-natal development alters amyloid pathology in an aged APPSWE/PS1ΔE9 murine model of Alzheimer's disease. Sci Rep 2017; 7 (01) 10411
  • 121 Dodiya HB, Frith M, Sidebottom A. et al. Synergistic depletion of gut microbial consortia, but not individual antibiotics, reduces amyloidosis in APPPS1-21 Alzheimer's transgenic mice. Sci Rep 2020; 10 (01) 8183
  • 122 Seo DO, O'Donnell D, Jain N. et al. ApoE isoform- and microbiota-dependent progression of neurodegeneration in a mouse model of tauopathy. Science 2023; 379 (6628) eadd1236
  • 123 Harach T, Marungruang N, Duthilleul N. et al. Reduction of Abeta amyloid pathology in APPPS1 transgenic mice in the absence of gut microbiota. Sci Rep 2017; 7: 41802
  • 124 Kim MS, Kim Y, Choi H. et al. Transfer of a healthy microbiota reduces amyloid and tau pathology in an Alzheimer's disease animal model. Gut 2020; 69 (02) 283-294
  • 125 Sun J, Xu J, Ling Y. et al. Fecal microbiota transplantation alleviated Alzheimer's disease-like pathogenesis in APP/PS1 transgenic mice. Transl Psychiatry 2019; 9 (01) 189
  • 126 Kim N, Jeon SH, Ju IG. et al. Transplantation of gut microbiota derived from Alzheimer's disease mouse model impairs memory function and neurogenesis in C57BL/6 mice. Brain Behav Immun 2021; 98: 357-365
  • 127 Berer K, Mues M, Koutrolos M. et al. Commensal microbiota and myelin autoantigen cooperate to trigger autoimmune demyelination. Nature 2011; 479 (7374) 538-541
  • 128 Ochoa-Repáraz J, Mielcarz DW, Ditrio LE. et al. Role of gut commensal microflora in the development of experimental autoimmune encephalomyelitis. J Immunol 2009; 183 (10) 6041-6050
  • 129 Yokote H, Miyake S, Croxford JL, Oki S, Mizusawa H, Yamamura T. NKT cell-dependent amelioration of a mouse model of multiple sclerosis by altering gut flora. Am J Pathol 2008; 173 (06) 1714-1723
  • 130 Lee YK, Menezes JS, Umesaki Y, Mazmanian SK. Proinflammatory T-cell responses to gut microbiota promote experimental autoimmune encephalomyelitis. Proc Natl Acad Sci U S A 2011; 108 (Suppl. 01) 4615-4622
  • 131 Ochoa-Repáraz J, Mielcarz DW, Wang Y. et al. A polysaccharide from the human commensal Bacteroides fragilis protects against CNS demyelinating disease. Mucosal Immunol 2010; 3 (05) 487-495
  • 132 Sun MF, Zhu YL, Zhou ZL. et al. Neuroprotective effects of fecal microbiota transplantation on MPTP-induced Parkinson's disease mice: gut microbiota, glial reaction and TLR4/TNF-α signaling pathway. Brain Behav Immun 2018; 70: 48-60
  • 133 Zhao Z, Ning J, Bao XQ. et al. Fecal microbiota transplantation protects rotenone-induced Parkinson's disease mice via suppressing inflammation mediated by the lipopolysaccharide-TLR4 signaling pathway through the microbiota-gut-brain axis. Microbiome 2021; 9 (01) 226
  • 134 Zhong Z, Chen W, Gao H. et al. Fecal microbiota transplantation exerts a protective role in MPTP-induced Parkinson's disease via the TLR4/PI3K/AKT/NF-κB pathway stimulated by α-synuclein. Neurochem Res 2021; 46 (11) 3050-3058
  • 135 Li K, Wei S, Hu L. et al. Protection of fecal microbiota transplantation in a mouse model of multiple sclerosis. Mediators Inflamm 2020; 2020: 2058272
  • 136 Segal A, Zlotnik Y, Moyal-Atias K, Abuhasira R, Ifergane G. Fecal microbiota transplant as a potential treatment for Parkinson's disease - a case series. Clin Neurol Neurosurg 2021; 207: 106791
  • 137 Kuai XY, Yao XH, Xu LJ. et al. Evaluation of fecal microbiota transplantation in Parkinson's disease patients with constipation. Microb Cell Fact 2021; 20 (01) 98
  • 138 Xue LJ, Yang XZ, Tong Q. et al. Fecal microbiota transplantation therapy for Parkinson's disease: a preliminary study. Medicine (Baltimore) 2020; 99 (35) e22035
  • 139 Huang H, Xu H, Luo Q. et al. Fecal microbiota transplantation to treat Parkinson's disease with constipation: a case report. Medicine (Baltimore) 2019; 98 (26) e16163
  • 140 Hazan S. Rapid improvement in Alzheimer's disease symptoms following fecal microbiota transplantation: a case report. J Int Med Res 2020; 48 (06) 300060520925930
  • 141 Park SH, Lee JH, Shin J. et al. Cognitive function improvement after fecal microbiota transplantation in Alzheimer's dementia patient: a case report. Curr Med Res Opin 2021; 37 (10) 1739-1744
  • 142 Engen PA, Zaferiou A, Rasmussen H. et al. Single-arm, non-randomized, time series, single-subject study of fecal microbiota transplantation in multiple sclerosis. Front Neurol 2020; 11: 978
  • 143 Borody T, Leis S, Campbell J, Torres M, Nowak A. Fecal microbiota transplantation (FMT) in multiple sclerosis (MS): 942. Mediators Inflamm 2020; 2020: 2058272
  • 144 Makkawi S, Camara-Lemarroy C, Metz L. Fecal microbiota transplantation associated with 10 years of stability in a patient with SPMS. Neurol Neuroimmunol Neuroinflamm 2018; 5 (04) e459
  • 145 Lu G, Wen Q, Cui B, Li Q, Zhang F. Washed microbiota transplantation stopped the deterioration of amyotrophic lateral sclerosis: the first case report and narrative review. J Biomed Res 2022; 37 (01) 69-76
  • 146 Han S, Lu Y, Xie J. et al. Probiotic gastrointestinal transit and colonization after oral administration: a long journey. Front Cell Infect Microbiol 2021; 11: 609722
  • 147 Abdel-Haq R, Schlachetzki JCM, Boktor JC. et al. A prebiotic diet modulates microglial states and motor deficits in α-synuclein overexpressing mice. eLife 2022; 11: e81453
  • 148 Nagpal R, Neth BJ, Wang S, Craft S, Yadav H. Modified Mediterranean-ketogenic diet modulates gut microbiome and short-chain fatty acids in association with Alzheimer's disease markers in subjects with mild cognitive impairment. EBioMedicine 2019; 47: 529-542
  • 149 Forbes JD, Bernstein CN, Tremlett H, Van Domselaar G, Knox NC. A fungal world: could the gut mycobiome be involved in neurological disease?. Front Microbiol 2019; 9: 3249
  • 150 Santiago-Rodriguez TM, Hollister EB. Human virome and disease: high-throughput sequencing for virus discovery, identification of phage-bacteria dysbiosis and development of therapeutic approaches with emphasis on the human gut. Viruses 2019; 11 (07) 656
  • 151 Virgin HW. The virome in mammalian physiology and disease. Cell 2014; 157 (01) 142-150
  • 152 Wallen ZD, Stone WJ, Factor SA. et al. Exploring human-genome gut-microbiome interaction in Parkinson's disease. NPJ Parkinsons Dis 2021; 7 (01) 74