Exp Clin Endocrinol Diabetes 2000; Vol. 108: 224-233
DOI: 10.1055/s-2000-8524
© Johann Ambrosius Barth

How pioglitazone affects glucose and lipid metabolism

M. H. Tan
  • Global Diabetes Care, Eli Lilly and Company, USA, Dalhousie University, Halifax, Nova Scotia, Canada
Further Information

Publication History

Publication Date:
31 December 2000 (online)

Summary:

The two primary perturbations resulting in hyperglycaemia in type 2 diabetes are insulin resistance and insulin deficiency. Insulin resistance occurs in peripheral organs (muscle and fat) leading to decreased glucose uptake and utilisation and in liver leading to increased hepatic glucose production. Thiazolidinediones, synthetic ligands for peroxisome proliferator-activated receptor gamma (PPARγ) can modulate the expression of genes influencing carbohydrate and lipid metabolism. Pioglitazone, a recently introduced thiazolidinedione, improves glycaemic control and lipid profiles in people with type 2 diabetes. Some of the possible mechanisms of improving glycaemic control include increases in glucose transporters 1 and 4, enhancement of insulin signalling, decrease in tumour necrosis factor-α, reduction of plasma free fatty acid, and decrease in phosphoenolpyruvate carboxykinase. Together, these can increase glucose uptake and utilisation in the peripheral organs and decrease gluconeogenesis in the liver. Possible mechanisms resulting in more desirable lipid profiles include an increase in phosphodiesterase 3B, resulting in reduced intracellular lipolysis in adipocytes, and an increase in lipoprotein lipase resulting in enhanced clearance of triglyceride-rich lipoproteins. In brief, pioglitazone reduces hepatic and peripheral insulin resistance.

References

  • 1 American Diabetes Association . Standards of medical care for patients with diabetes mellitus.  Diabetes Care 22 ((Suppl 1)) S32-S41 1999; 
  • 2 American Diabetes Association . Consensus Development Conference on Insulin Resistance. 5-6 November 1997.  Diabetes. 21 310-314 1998; 
  • 3 Auwerx J. PPARγ, the ultimate thrifty gene.  Diabetologia. 42 1033-1049 1999; 
  • 4 Bonini J A, Colca J R, Dailey C, White M, Hofmann C. Compensatory alterations for insulin signal transduction and glucose transport in insulin-resistant diabetes.  Am J Physiol. 269 E759-E765 1995; 
  • 5 Braissant O, Foufelle F, Scotto C, Dauca M, Wahli W. Differential expression of peroxisome proliferator-activated receptors (PPARs): tissue distribution of PPARα, -β, and -γ in the adult rat.  Endocrinology. 137 354-366 1996; 
  • 6 Burant C F, Sreenan S, Hirano K, Tai T A, Lohmiller J, Lukens J, Davidson N O, Ross S, Graves R A. Troglitazone action is independent of adipose tissue.  J Clin Invest. 100 2900-2908 1997; 
  • 7 Carey G B. Mechanisms regulating adipocyte lipolysis.  Adv Exp Med Biol. 441 157-170 1998; 
  • 8 Castle C K, Colca J R, Melchior G W. Liporotein profile characterization of the KKAy mouse, a rodent model of type II diabetes, before and after treatment with the insulin-sensitizing agent pioglitazone.  Arterioscler Thromb Vasc Biol. 13 302-309 1993; 
  • 9 Cline G W, Peterson K F, Krssak M, Shen J, Hundal R S, Trajanoski Z, Inzucchi S, Dresner A, Rothman D L, Shulman G I. Impaired glucose transport as a cause of decreased insulin-stimulated muscle glycogen synthesis in type 2 diabetes.  N Engl J Med. 341 240-246 1999; 
  • 10 Cusi K, Maezono K, Osman A, Pendergrass M, Patti M E, Pratipanawatr T, DeFronzo R A, Kahn C R, Mandarino L J. Insulin resistance differentially affects the PI 3-kinase- and MAP kinase-mediated signaling in human muscle.  J Clin Invest. 105 311-320 2000; 
  • 11 Damsbo P, Vaag A, Hother-Nielsen O, Beck-Nielsen H. Reduced glycogen synthase activity in skeletal muscle from obese patients with and without type 2 (non-insulin-dependent) diabetes mellitus.  Diabetologia. 34 239-345 1991; 
  • 12 De Fea K, Roth R A. Protein kinase C modulation of insulin receptor substrate-1 tyrosine phosphorylation requires serine 612.  Biochemistry. 36 12939-12947 1997; 
  • 13 DeFronzo R A. Pharmacologic therapy for type 2 diabetes mellitus.  Ann Intern Med. 131 281-303 1999; 
  • 14 DeFronzo R A, Simonson D, Ferrannini E. Hepatic and peripheral insulin resistance: a common feature of type 2 (non-insulin-dependent) and type 1 (insulin-dependent) diabetes mellitus.  Diabetologia. 23 313-319 1982; 
  • 15 Desvergne B, Wahli W. Peroxisome proliferator-activated receptors: nuclear control of metabolism.  Endocr Rev. 20 649-688 1999; 
  • 16 The Diabetes Control and Complications Trial Research Group . The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus.  N Engl J Med. 329 977-986 1993; 
  • 17 Dohm G L, Elton C W, Friedman J E, Pilch P F, Pories W J, Atkinson S M, Caro J F. Decreased expression of glucose transporter in muscle from insulin-resistant patients.  Am J Physiol. 260 E459-E463 1991; 
  • 18 Dresner A, Laurent D, Marcucci M, Griffin M E, Dufour S, Cline G W, Slezak L A, Andersen D K, Hundal R S, Rothman D L, Petersen K F, Shulman G I. Effects of free fatty acids on glucose transport and IRS-1-associated phosphatidylinositol 3-kinase activity.  J Clin Invest. 103 253-259 1999; 
  • 19 Einhorn D, Rendell M, Rosenzweig J, Egan JW, Mathisen AL, Schneider RL. Pioglitazone hydrochloride in combination with metformin therapy improves glycemic control in the treatment of patients with type 2 diabetes mellitus: a randomised placebo-controlled study. Clinical Therapeutics.  22(12) in press, 2000; 
  • 20 el-Kebbi I M, Roser S, Pollet R J. Regulation of glucose transport by pioglitazone in cultured muscle cells.  Metabolism. 43 953-958 1994; 
  • 21 Engfeldt P, Arner P, Bolinder J, Ostman J. Phosphodiesterase activity in human subcutaneous adipose tissue in insulin- and noninsulin-dependent diabetes mellitus.  J Clin Endocrinol Metab. 55 983-988 1982; 
  • 22 Fajas L, Fruchart J C, Auwerx J. Transcriptional control of adipogenesis.  Curr Opin Cell Biol. 10 165-173 1998; 
  • 23 Garvey W T, Maianu L, Huecksteadt T P, Birnbaum M J, Molina J M, Ciaraldi T P. Pretranslational suppression of a glucose transporter protein causes insulin resistance in adipocytes from patients with non-insulin-dependent diabetes mellitus and obesity.  J Clin Invest. 87 1072-1081 1991; 
  • 24 Gumbiner B, Mucha J F, Lindstrom J E, Rekhi I, Livingston J N. Differential effects of acute hypertriglyceridemia on insulin action and insulin receptor autophosphorylation.  Am J Physiol. 270 E424-E429 1996; 
  • 25 Hallakou S, Doare L, Foufelle F, Kergoat M, Guerre-Millo M, Berthault M F, Dugail I, Morin J, Auwerx J, Ferre P. Pioglitazone induces in vivo adipocyte differentiation in the obese Zucker fa/fa rat.  Diabetes. 46 1393-1399 1997; 
  • 26 Hayakawa T, Shiraki T, Morimoto T, Shii K, Ikeda H. Pioglitazone improves insulin signaling defects in skeletal muscle from Wistar fatty (fa/fa) rats.  Biochem Biophys Res Commun. 223 439-444 1996; 
  • 27 Hofmann C, Lorenz K, Williams D, Palazuk B J, Colca J R. Insulin sensitization in diabetic rat liver by an antihyperglycemic agent.  Metabolism. 44 384-389 1995; 
  • 29 Hofmann C, Lorenz K, Braithwaite S S, Colca J R, Palazuk B J, Hotamisligil G S, Spiegelman B M. Altered gene expression for tumor necrosis factor-α and its receptors during drug and dietary modulation of insulin resistance.  Endocrinology. 134 264-270 1994; 
  • 30 Hofmann C A, Edwards C W, Hillman R M, Colca J R. Treatment of insulin-resistant mice with the oral antidiabetic agent pioglitazone: evaluation of liver GLUT2 and phosphoenolpyruvate carboxykinase expression.  Endocrinology. 130 735-740 1992; 
  • 31 Hofmann C, Lorenz K, Colca J R. Glucose transport deficiency in diabetic animals is corrected by treatment with the oral antihyperglycemic agent pioglitazone.  Endocrinology. 129 1915-1925 1991; 
  • 32 Hotamisligil G S, Peraldi P, Budavari A, Ellis R, White M F, Spiegelman B M. IRS-1-mediated inhibition of insulin receptor tyrosin kinase activity in TNF-α- and obesity-induced insulin resistance.  Science. 271 665-668 1996; 
  • 33 Hotamisligil G S, Arner P, Caro J F, Atkinson R L, Spiegelman B M. Increased adipose tissue expression of tumor necrosis factor-α in human obesity and insulin resistance.  J Clin Invest. 95 2409-2415 1995; 
  • 34 Hotamisligil G S, Spiegelman B M. Tumor necrosis factor α: a key component of the obesity-diabetes link.  Diabetes. 43 1271-1278 1994; 
  • 35 Hotamisligil G S, Shargill N S, Spiegelman B M. Adipose expression of tumor necrosis factor-α: direct role in obesity-linked insulin resistance.  Science. 259 87-91 1993; 
  • 36 Ikeda T, Fujiyama K. The effect of pioglitazone on glucose metabolism and insulin uptake in the perfused liver and hindquarter of high-fructose-fed rats.  Metabolism. 47 1152-1155 1998; 
  • 37 Kaneko T, Baba S, Toyota T. et al. . Dose finding study of AD-4833 in patients with NIDDM on diet therapy alone.  Jap J Clin Exp Med. 74 1250-1277 1997; 
  • 38 Kawamori R, Matshuhisa M, Kinoshita J, Mochizuki K, Niwa M, Arisaka T, Ikeda M, Kubota M, Wada M, Kanda T, Ikebuchi M, Tohdo R, Yamasaki Y. Pioglitazone enhances splanchnic glucose uptake as well as peripheral glucose uptake in non-insulin-dependent diabetes mellitus.  Diabetes Res Clin Pract. 41 35-43 1998; 
  • 39 Kazumi T, Hirano T, Odaka H, Ebara T, Amano N, Hozumi T, Ishida Y, Yoshino G. VLDL triglyceride kinetics in Wistar fatty rats, an animal model of NIDDM: effects of dietary fructose alone or in combination with pioglitazone.  Diabetes. 45 806-811 1996; 
  • 40 Kipnes M, Krosnick A, Rendell M, Egan J W, Mathisen A L, Schneider R L. Pioglitazone hydrochloride in combination with sulfonylurea therapy improves glycemic control in the treatment of patients with type 2 diabetes mellitus: a randomized, placebo-controlled study. Submitted for publication. 
  • 41 Kletzien R F, Clarke S D, Ulrich R G. Enhancement of adipocyte differentiation by an insulin-sensitizing agent.  Mol Pharmacol. 41 393-398 1992; 
  • 42 Kobayashi M, Iwanishi M, Egawa K, Shigeta Y. Pioglitazone increases insulin sensitivity by activating insulin receptor kinase.  Diabetes. 41 476-483 1992; 
  • 43 Kruszynska Y T, Mulford M I, Baloga J, Yu J G, Olefsky J M. Regulation of skeletal muscle hexokinase II by insulin in nondiabetic and NIDDM subjects.  Diabetes. 47 1107-1113 1998; 
  • 44 Lang C H, Dobrescu C, Bagby G J. Tumor necrosis factor impairs insulin action on peripheral glucose disposal and hepatic glucose output.  Endocrinology. 130 43-52 1992; 
  • 45 Lefebvre A M, Peinado-Onsurbe J, Leitersdorf I, Briggs M R, Paterniti J R, Fruchart J C, Fievet C, Auwerx J, Staels B. Regulation of lipoprotein metabolism by thiazolidinediones occurs through a distinct but complementary mechanism relative to fibrates.  Arterioscler Thromb Vasc Biol. 17 1756-1764 1997; 
  • 46 Mahankali A, Miyazaki Y, Matsuda M, Cusi K, Mandarino L, DeFronzo R. Effect of pioglitazone on glucose tolerance and insulin sensitivity in diet-controlled type 2 diabetic subjects.  Diabetes 49 ((Suppl 1)) A116 2000; 
  • 47 Makino H, Kanatsuka A, Suzuki T, Kuribayashi S, Hashimoto N, Yoshida S, Nishimura M. Insulin resistance of fat cells from spontaneously diabetic KK mice. Analysis of insulin-sensitive phosphodiesterase.  Diabetes. 34 844-849 1985; 
  • 48 Martin G, Schoonjans K, Staels B, Auwerx J. PPARγ activators improve glucose homeostasis by stimulating fatty acid uptake in the adipocytes.  Atherosclerosis 137 ((Suppl)) S75-S80 1998; 
  • 49 Meltzer S, Leiter L, Daneman D, Gerstein H C, Lau D, Ludwig S, Yale J F, Zinman B, Lillie D. 1998 clinical practice guidelines for the management of diabetes in Canada.  Canadian Diabetes Association. CMAJ 159 ((Suppl 8)) S1-S29 1998; 
  • 50 Miyazaki Y, Mahankali A, Matsuda M, Cusi K, Mandarino L, DeFronzo R A. Effect of pioglitazone on glucose metabolism in sulfonylurea-treated patients with type 2 diabetes.  Diabetes 49 ((Suppl 1)) A117 2000; 
  • 51 Moller D E, Flier J S. Insulin resistance-mechanisms, syndromes, and implications.  N Engl J Med. 325 938-948 1991; 
  • 52 Murase K, Odaka H, Suzuki N, Tayuki N, Ikeda H. Pioglitazone time-dependently reduces tumour necrosis factor-α level in muscle and improves metabolic abnormalities in Wistar fatty rats.  Diabetologia. 41 257-264 1998; 
  • 53 Nishimura Y, Inoue Y, Takeuchi H, Oka Y. Acute effects of pioglitazone on glucose metabolism in perfused rat liver.  Acta Diabetol. 34 206-210 1997; 
  • 54 Ohkubo Y, Kishikawa H, Araki E, Miyata T, Isami S, Motoyoshi S, Kojima Y, Furuyoshi N, Shichiri M. Intensive insulin therapy prevents the progression of diabetic microvascular complications in Japanese patients with non-insulin-dependent diabetes mellitus: a randomized prospective 6-year study.  Diabetes Res Clin Pract. 28 103-117 1995; 
  • 55 Reaven G M. Pathophysiology of insulin resistance in human disease.  Physiol Rev. 75 473-486 1995; 
  • 56 Reaven G M, Hollenbeck C, Jeng C Y, Wu M S, Chen Y D. Measurement of plasma glucose, free fatty acid, lactate, and insulin for 24 h in patients with NIDDM.  Diabetes. 37 1020-1024 1988; 
  • 57 Rebrin K, Steil G M, Getty L, Bergman R N. Free fatty acid as a link in the regulation of hepatic glucose output by peripheral insulin.  Diabetes. 44 1038-1045 1995; 
  • 58 Rubin C, Egan J, Schneider R. Pioglitazone 014 Study Group. Combination therapy with pioglitazone and insulin in patients with type 2 diabetes.  Diabetes 48 ((Suppl 1)) A110 1999; 
  • 59 Saghizadeh M, Ong J M, Garvey W T, Henry R R, Kern P A. The expression of TNF alpha by human muscle. Relationship to insulin resistance.  J Clin Invest. 97 1111-1116 1996; 
  • 60 Saltiel A R, Olefsky J M. Thiazolidinediones in the treatment of insulin resistance and type II diabetes.  Diabetes. 45 1661-1669 1996; 
  • 61 Sandouk T, Reda D, Hofmann C. Antidiabetic agent pioglitazone enhances adipocyte differentiation of 3T3-F442A cells.  Am J Physiol. 264 C1600-C1608 1993a; 
  • 62 Sandouk T, Reda D, Hofmann C. The antidiabetic agent pioglitazone increases expression of glucose transporters in 3T3-F442A cells by increasing messenger ribonucleic acid transcript stability.  Endocrinology. 133 352-359 1993b; 
  • 63 Schneider R, Lessen J, Lekich R. Pioglitazone 001 Study Group. Pioglitazone is effective in the treatment of patients with type 2 diabetes.  Diabetes 48 ((Suppl 1)) A109 1999; 
  • 65 Schoonjans K, Staels B, Auwerx J. Role of the peroxisome proliferator-activated receptor (PPAR) in mediating the effects of fibrates and fatty acids on gene expression.  J Lipid Res. 37 907-925 1996; 
  • 66 Shepherd P R, Kahn B B. Glucose transport and insulin action-implications for insulin resistance and diabetes mellitus.  N Engl J Med. 341 248-257 1999; 
  • 67 Shulman G I, Rothman D L, Jue T, Stein P, DeFronzo R A, Shulman R G. Quantitation of muscle glycogen synthesis in normal subjects and subjects with non-insulin-dependent diabetes by 13C nuclear magnetic resonance spectroscopy.  N Engl J Med. 322 223-228 1990; 
  • 68 Sugiyama Y, Shimura Y, Ikeda H. Effects of pioglitazone on hepatic and peripheral insulin resistance in Wistar fatty rats.  Arzneimittelforschung. 40 436-440 1990; 
  • 69 Suzuki T, Makino H, Kanatsuka A, Kuribayashi S, Hashimoto N, Yoshida S. Insulin-sensitive phosphodiesterase and insulin receptor binding in fat cells from spontaneously obese rats.  Diabetologia. 28 286-290 1985; 
  • 70 Swanson M L, Bleasdale J E. Antidiabetic agent pioglitazone increases insulin receptors on 3T3-L1 adipocytes.  Drug Dev Res. 35 69-82 1995; 
  • 71 Szalkowski D, White-Carrington S, Berger J, Zhang B. Antidiabetic thiazolidinediones block the inhibitory effect of tumor necrosis factor-α on differentiation, insulin stimulated glucose uptake, and gene expression in 3T3-L1 cells.  Endocrinology. 136 1474-1481 1995; 
  • 72 Tang Y, Osawa H, Onuma H, Nishimiya T, Ochi M, Makino H. Improvement in insulin resistance and the restoration of reduced phosphodiesterase 3B gene expression by pioglitazone in adipose tissue of obese diabetic KKAy mice.  Diabetes. 48 1830-1835 1999; 
  • 73 Turner R C, Cull C A, Frighi V, Holman R R. Glycemic control with diet, sulfonylurea, metformin, or insulin in patients with type 2 diabetes mellitus: progressive requirement for multiple therapies (UKPDS 49). UK Prospective Diabetes Study (UKPDS) Group.  JAMA. 281 2005-2012 1999; 
  • 74 UK Prospective Diabetes Study (UKPDS) Group . Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33).  Lancet. 352 837-853 1998; 
  • 75 White M F, Kahn C R. The insulin signaling system.  J Biol Chem. 269 1-4 1994; 
  • 76 Yamasaki Y, Kawamori R, Wasada T, Sato A, Omori Y, Eguchi H, Tominaga M, Sasaki H, Ikeda M, Kubota M, Ishida Y, Hozumi T, Baba S, Uehara M, Shichiri M, Kaneko T. Pioglitazone (AD-4833) ameliorates insulin resistance in patients with NIDDM. AD-4833 Glucose Clamp Study Group, Japan.  Tohoku J Exp Med. 183 173-183 1997; 
  • 77 Yki-Jarvinen H, Puhakainen I, Koivisto V A. Effect of free fatty acids on glucose uptake and nonoxidative glycolysis across human forearm tissues in the basal state and during insulin stimulation.  J Clin Endocrinol Metab. 72 1268-1277 1991; 
  • 78 Zierath J R, He L, Guma A, Odegoard Wahlstrom E, Klip A, Wallberg-Henriksson H. Insulin action on glucose transport and plasma membrane GLUT4 content in skeletal muscle from patients with NIDDM.  Diabetologia. 39 1180-1189 1996; 

Dr. Meng Hee Tan

Lilly Corporate Center

Eli Lilly and Company

Indianapolis, IN 46285

USA

Phone: 317-433-0251

Email: tan_meng@lilly.com

    >