Laryngorhinootologie 2001; 80(12): 725-730
DOI: 10.1055/s-2001-19580
OTOLOGIE
© Georg Thieme Verlag Stuttgart · New York

Die frühe postnatale Entwicklung der Cochlea des Goldhamsters

The Early Postnatal Development of the Hamster CochleaW. Giebel, N.-R. Wei[1]
  • Abteilung für Phoniatrie und Pädaudiologie (Direktor: Prof. Dr. R. Arold)
Further Information

Publication History

Publication Date:
16 January 2002 (online)

Zusammenfassung

Angeborene Schwerhörigkeit lässt sich frühzeitig diagnostizieren. Welche Strukturen der Cochlea geschädigt sind, bleibt weitgehend ungeklärt. Systematische Untersuchungen zur gezielten experimentellen Schädigung der Cochlea während der frühen Differenzierung können zur weiteren Klärung beitragen. Dafür muss ein Tiermodell etabliert werden, bei dem am einzelnen Individuum gezielte Schädigungen durchgeführt werden können. Deshalb wurde die Cochlea des Goldhamsters am 1., 5., 9. und 13. Tag nach der Geburt histologisch analysiert. Zum Zeitpunkt der Geburt befindet sich die Cochlea des Goldhamsters in der apikalen Windung in einem Entwicklungsstadium, das mit dem des Menschen zu Beginn des 2. Embryonalmonats vergleichbar ist. In der basalen Windung entspricht die Differenzierung des Ductus cochlearis beim Goldhamster dem des Menschen am Ende des 2. Embryonalmonats. Die Entwicklungsstadien des Ductus cochlearis am 5. Tag repräsentieren den gesamten 3. Embryonalmonat des Menschen (8. bis 12. Woche). Der Einfluss einer Noxe auf die Cochlea eines neugeborenen Goldhamsters ermöglicht an einem Individuum die pathohistologische und elektrophysiologische Analyse der Schädigung der Strukturen des Ductus cochlearis für alle Entwicklungsstadien der Cochlea beim Menschen während des gesamten zweiten Schwangerschaftsmonats.

The Early Postnatal Development of the Hamster Cochlea

Inborn deafness can be diagnosed very early. Deafness in early childhood can be caused by: genetic defects (30 % - 40 %), embryopathies, embryonic noxae (60 %) and pre-, peri- and postnatal noxae. Which structures of the cochlea are disturbed, is unknown in most cases. Systematic studies are necessary with directed experimental impairments of the cochlea in the early development to elucidate these mechanisms. An animal model has to be established in which directed impairments can be carried out in single individuals. The cochlea of the hamster is at birth in a very early state of development. In the apical turn the epithelial layer of the cochlear duct is undifferentiated, whereas in the basal turn the papilla basilaris (Kölliker's organ), the lateral wall and Reissner's membrane are visible. Between the base of the cochlea (1st coil lateral) and the apical part (3rd coil lateral) the difference in the development of the hamster cochlea is exactly four days. This is evident for the 1st and the 5th day after birth. The cochlea development of the hamster is very rapid. The development during one day represents one week of development in the human cochlea. The difference in development in one hamster cochlea from the apex to the base at a certain day representing four days of development is comparable with the development time of four weeks in human. The different developmental stages which are present in the hamster cochlea of a certain day represent the development of the human cochlea of a whole month. The hamster cochlea at the 1st day after birth covers the 2nd embryonic month of the human (4th to 8th week) and at the 5th day the 3rd embryonic month (8th to 12th week). The hamster cochlea at the 1st and the 5th day after birth is especially suitable to study experimental disturbances in the early stages of the development of the cochlear duct when the tectorial membrane, the spiral limbus, the stria vascularis, Reissners membrane and the external spiral Sulcus with the root cells are differentiating. The biggest advantage is that the noxae (hypoxia, teratogenic substances, ototoxic antibiotics and intense noise) can be applied to single individuals which offers better control than the treatment of the mother.

Literatur

  • 1 Anderson H, Barr B, Wedenberg E. Genetic disposition - a prerequisite for maternal rubella deafness.  Arch Otolaryng. 1970;  91 141-147
  • 2 Cousillas H, Rebillard G. Age-dependent effects of a pure tone trauma in the chick basilar papilla: evidence for a development of the tonotopic organization.  Hear Res. 1985;  19 217-261
  • 3 Deol M S. Anatomy and development of mutants piruette, shaker-1, and waltzer in the mouse.  Proc R So (Biol.). 1956;  145 206-213
  • 4 Deol M S. Development of the inner ear of mice homozygous for shaker with syndactilism.  J Embryol Exp Morphol. 1963;  11 493-512
  • 5 Deol M S. Origin of abnormalities of the inner ear in Dreher mice.  J Embryol Exp Morphol. 1964;  12 727-733
  • 6 Deol M S. Abnormalities in the inner ear of the Kreisler mouse.  J Embryol Exp Morphol. 1964;  12 475-490
  • 7 Gussen R. Mondini type of genetically determined deafness.  J Laryng. 1968;  82 41-55
  • 8 Harrison K. Causation of deafess in childhood.  J Laryng. 1959;  73 451-460
  • 9 Jókay I, Soós G, Répássy G, Dezsõ B. Apoptosis in the human inner ear.  Hear Res. 1998;  117 131 - 139
  • 10 Jørgensen M B, Kristensen H KN, Buch H. Thalidomide-induced aplasias of the inner ear.  J Laryng. 1964;  78 1095-1101
  • 11 Kikuchi K, Hilding D A. The defective organ of corti in shaker-1 mice.  Acta Otolaryngol. 1965;  60 287-303
  • 12 Kleinsasser O , Schlothane R. Die Ohr Mißbildungen im Rahmen der Thalidomid Embryopathie.  Laryngo Rhino Otol. 1964;  43 344-367
  • 13 Knipper M . et al . Thyroid hormone affects Schwann cell and oligodendrocyte gene expression at the glial transition zone of the VIIIth nerve prior to cochlea function.  Development. 1998;  18 125
  • 14 Lautermann J, ten Cate W J. Postnatal expression of the alpha-thyroid hormone receptor in the rat cochlea.  Hear Res. 1997;  107 23-28
  • 15 Leake P A, Kuntz A L, Moore C M, Chambers P L. Cochlear pathology by aminoglycoside ototoxicity during postnatal maturation in cats.  Hear Res. 1997;  113 117-132
  • 16 Meyer zum Gottesberge A, Mai J K. Pre and postnatal expression of glycoconjugates (3-fucosyl-N-acatyllactosamine and NHK-1 epitopes) in the mouse inner ear.  Int J Dev Neurosci. 1997;  15 645-656
  • 17 Morlet T, Collet I, Salla B, Morgon A. Functional maturation of the cochlear active mechanism and of the medial olivocochlear system in humans.  Acta Otolaryngol. 1993;  113 271-277
  • 18 Müller M. Developmental changes of the frequency representation in the rat cochlea.  Hear Res. 1991;  65 1-7
  • 19 Paparella M M, Winter L E. Sensorineural deafness in childhood.  Trans Amer Acad Ophtal Otolaryng. 1968;  72 782-788
  • 20 Proctor C A, Proctor B. Understanding hereditary nerve deafness.  Arch Otolaryng. 1967;  85 45-62
  • 21 Pujol R, Abonnec M. Receptor maturation and synaptogenesis in the golden hamster cochlea.  Arch Otorhinolaryngol. 1977;  217 1-12
  • 22 Remezal M, Gil-Loyzaga P. Incorporation of D³H glucosamine to the adult and developing cochlear tectorial membrane of normal and hypothyroid rats.  Hear Res. 1993;  66 23-30
  • 23 Shepherd R K, Martin R L. Onset of ototoxicity in the cat is related to the onset of auditory function.  Her Res. 1995;  92 131-142
  • 24 Sher A. The embryonic and postnatal development of the inner ear of the mouse.  Acta Otolaryngol (Suppl). 1971;  285 1-77
  • 25 Simmons D, Manson-Gieseke L, Hendrix T, McCarter S. Reconstruction of the efferent fibers in the postnatal hamster cochlea.  Hear Res. 1990;  49 127-140
  • 26 Stephens C. Development of the middle and inner ear in the golden hamster.  Acta Otolaryngol (Suppl). 1972;  296 1-51
  • 27 Suzuki M, Tatsuya Y, Kimitaka K. Development of the blood-labyrinth barrier in the rat.  Hear Res. 1998;  116 107-112
  • 28 Thorn L, Arnold W, Schinko I, Wetzstein R. The limbus spiralis and its relationship to the developing tectorial membrane in the cochlear duct of the guinea pig fetus.  Ant Embryol. 1979;  155 303-310
  • 29 Töndury G. Zur Wirkung des Erregers der Rubeolen auf den menschlichen Keimling.  Helv Paediat Acta. 1952;  7 105-135
  • 30 Weibel E. Zur Kenntnis der Differenzierungsvorgänge in Epithel des Ductus cochlearis.  Acta Anat. 1957;  29 53-90
  • 31 Yamashita H, Bagger-Sjöbäck D. Expression of glycoconjugates in the human fetal cochlea.  Acta Otolaryngol. 1992;  112 628-634

1 Professor Neng-Run Wei ist Gastprofessor von der HNO-Klinik der Tong-ji Medizinischen Fakultät der Huazhong Universität der Wissenschaft und Technologie Wuhan Hubei VR China.

Priv.-Doz. Dr. Werner Giebel

Abteilung für Phoniatrie und Pädaudiologie
Universitätsklinik für Hals-, Nasen- und Ohrenheilkunde

Silcherstraße 5
72076 Tübingen

    >