Horm Metab Res 2002; 34(3): 160-164
DOI: 10.1055/s-2002-23201
Original Clinical

© Georg Thieme Verlag Stuttgart · New York

Elevation of Serum Thioredoxin Levels in Patients with Type 2 Diabetes

Y.  Kakisaka 1 , T.  Nakashima 1 , Y.  Sumida 1 , T.  Yoh 1 , H.  Nakamura 2 , J.  Yodoi 2 , H.  Senmaru 1
  • 1Third Department of Internal Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
  • 2Department of Biological Responses, Institute for Virus Research, Kyoto University, Kyoto, Japan
Further Information

Publication History

16 March 2001

24 September 2001

Publication Date:
26 March 2002 (online)

Abstract

To evaluate the clinical significance of thioredoxin in diabetic patients, serum thioredoxin levels measured with a recently established sandwich enzyme-linked immunosorbent assay kit were compared with clinical laboratory data and complications in 174 patients with Type 2 diabetes. Thioredoxin levels were significantly higher in diabetic patients (mean value, 38 ng/ml) than in healthy controls (21 ng/ml) (p < 0.05). Fasting blood sugar and hemoglobin A1c did not correlate with thioredoxin. Plasma non-esterified fatty acids levels were significantly higher in patients with higher thioredoxin levels (≥ 40 ng/ml) than in those with lower thioredoxin levels (< 40 ng/ml) (p < 0.001). There was a significant correlation both between thioredoxin and non-esterified fatty acids in patients with diet/exercise therapy (p < 0.01) and between thioredoxin and fasting immunoreactive insulin in those treated with diet/exercise or oral hypoglycemic agents (p < 0.05). Thioredoxin did not correlate with diabetic complications. In conclusion, serum thioredoxin levels may reflect the status of insulin resistance in Type 2 diabetic patients.

References

  • 1 Betteridge D J. What is oxidative stress?.  Metabolism. 2000;  49 3-8
  • 2 Hunt J V, Dean R T, Wolff S P. Hydroxyl radical production and autoxidative glycosylation. Glucose autoxidation as the cause of protein damage in the experimental glycation model of diabetes mellitus and aging.  Biochem J. 1988;  256 205-212
  • 3 Ido Y, Kilo C, Williamson J R. Cystolic NADH/NAD+, free radicals and vascular dysfunction in early diabetes mellitus.  Diabetologia. 1997;  40 (suppl 2) S115-S117
  • 4 Yan S D, Schmidt A M, Andersons G M, Zhang J, Brett J, Zou Y S, Pinsky D, Stern D. Enhanced cellular oxidant stress by the interaction of advanced glycation end products with their receptors/binding proteins.  J Biol Chem. 1994;  269 9889-9897
  • 5 Ookawara T, Kawamura N, Kitagawa Y, Taniguchi N. Site-specific and random fragmentation of Cu, Zn-superoxide dismutase by glycation reaction.  J Biol Chem. 1992;  267 18 505-18 510
  • 6 Ting H H, Timimi F K, Boles K S, Creager S J, Ganz P, Creager M A. Vitamin C improves endothelium-dependent vasodilatation in patients with non-insulin-dependent diabetes mellitus.  J Clin Invest. 1996;  97 22-28
  • 7 Halliwell B. Free Radicals, antioxidants and human disease: curiosity, cause, or consequence?.  Lancet. 1995;  344 721-724
  • 8 Holmgren A. Thioredoxin.  Annu Rev Biochem. 1985;  54 237-271
  • 9 Luthman M, Holmgren A. Rat liver thioredoxin and thioredoxin reductase: purification and characterization.  Biochemistry. 1982;  21 6628-6633
  • 10 Nakamura H, Nakamura K, Yodoi J. Redox regulation of cellular activation.  Annu Rev Immunol. 1997;  15 351-369
  • 11 Bertini R, Howard O MZ, Dong H F, Oppenheim J J, Bizzari C, Sergi R, Caselli G, Pagliei S, Romines B, Wilshire J A, Mengozzi M, Nakamura H, Yodoi J, Pekkari K, Gurunath R, Holmgren A, Herzenberg L A, Ghezzi P. Thioredoxin, a redox enzyme released in infection and inflammation, is a unique chemoattractant for neutrophils, monocytes, and T cells.  J Exp Med. 1999;  189 1783-1789
  • 12 Nakamura H, de Rosa S, Roederer M, Anderson M T, Dubs J G, Yodoi J, Holmgren A, Herzenberg L A. Elevation of plasma thioredoxin levels in HIV-infected individuals.  Int Immunol. 1996;  8 603-611
  • 13 Nakashima T, Sumida Y, Yoh T, Kakisaka Y, Nakajima Y, Ishikawa H, Mitsuyoshi H, Kashima K, Nakamura H, Yodoi J. Thioredoxin levels in the sera of untreated viral hepatitis patients and those treated with glycyrrhizin or ursodeoxychoiic acid.  Antiox Redox Signal. 2000;  2 687-694
  • 14 Hayashi T, Ueno Y, Okamoto T. Oxidoreductive regulation of nuclear factor kappa-B involvement of a cellular reducing catalyst thioredoxin.  J Biol Chem. 1993;  268 11 380-11 388
  • 15 Makino Y, Okamoto K, Yoshikawa N, Aoshima M, Hirota K, Yodoi J, Umesono K, Makino I, Tanaka H. Thioredoxin: a redox-regulating cellular cofactor for glucocorticoid hormone action.  J Clin Invest. 1996;  98 2469-2477
  • 16 American Diabetes Association. Report of the expert committee on the diagnosis and classification of diabetes mellitus.  Diabetes Care. 1997;  20 1183-1197
  • 17 Holmgren A, Luthman M. Tissue distribution and subcellular localization of bovine thioredoxin determined by radioimmunoassay.  Biochemistry. 1978;  17 4071-4077
  • 18 Matthews D R, Hosker J P, Rudenski A S, Naylor B A, Treacher D F, Turner R C. Homeostasis model assessment: insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man.  Diabetologia. 1985;  28 412-419
  • 19 Kogaki H, Fujiwara Y, Yoshiki A, Kitajima S, Tanimoto T, Mitsui A, Shimamura T, Hamuro J, Ashihara T. Sensitive enzyme-linked immunosorbent assay for adult T-cell leukemia-derived factor and normal value measurement.  J Clin Lab Anal. 1996;  10 257-261
  • 20 Sumida Y, Nakashima T, Yoh T, Ishikawa H, Mitsuyoshi H, Sakamoto Y, Okanoue T, Kashima K, Nakamura H, Yodoi J. Serum thioredoxin levels as an indicator of oxidative stress in patients with hepatitis C virus infection.  J Hapatol. 2000;  33 616-622
  • 21 Fujii S, Nanbu Y, Konishi I, Mori T, Matsutani H, Yodoi J. Immunohistochemical localization of adult T-cell leukemia-derived factor, a human thioredoxin homologue, in human fatal tissue.  Virch Arch A Pathol Anat Histopathol. 1991;  419 317-326
  • 22 Jensen M D, Haymond M W, Rizza R A, Cryer P E, Miles J M. Influence of body fat distribution on free fatty acid metabolism in obesity.  J Clin Invest. 1989;  83 1168-1173
  • 23 Groop L C, Saloranta C, Shank M, Bonadonna R C, Ferrannini E, DEfronzo R A. The role of free fatty acid metabolism in the pathogenesis of insulin resistance in obesity and noninsulin-dependent diabetes mellitus.  J Clin Endocrinol Metab. 1991;  72 96-107
  • 24 Uji Y, Okabe H. Free fatty acid.  J Clin. 1995;  53 (extra) 611-614
  • 25 Okabe H. Free fatty acid (FFA).  Intern Med. 1998;  81 1273
  • 26 Randle P J, Garland P B, Hales C N, Newsholme E A. The glucose fatty acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus.  Lancet. 1963;  i 785-789
  • 27 Martin B C, Warram J H, Krolewski A S, Bergman R N, Soeldner J S, Kahn C R. Role of glucose and insulin resistance in development of type 2 diabetes mellitus: results of a 25-year follow-up study.  Lancet. 1992;  340 925-929
  • 28 Bergman R N. Non-esterified fatty acids and the liver: why is insulin secreted into the portal vein?.  Diabetologia. 2000;  43 946-952
  • 29 Mykkanen L, Haffher S M, Ronnemaa T, Bergman R, Laakso M. Low insulin sensitivity is associated with clustering of cardiovascular disease risk factors.  Am J Epidemiol. 1997;  146 315-321
  • 30 Modan M, Halkin H, Almong S, Lusky A, Eshkol A, Shefi M, Shitrit A, Fuchs Z. Hyperinsulinemia: a link between hypertension, obesity, and glucose intolerance.  J Clin Invest. 1985;  75 809-817
  • 31 Giovannucci E. Insulin and colon cancer.  Cancer Causes Control. 1995;  6 164-179
  • 32 Kurrer M O, Pakala S V, Hanson H L, Katz J D. β-cell apoptosis in T cell-mediated autoimmune diabetes.  Proc Natl Acad Sci USA. 1997;  94 213-218
  • 33 Kroncke K D, Bachofen V K, Berschick B, Burkart V, Kolb H. Activated macrophages kill pancreatic syngeneic islet cells via arginine-dependent nitric oxide generation.  Biochem Biophys Res Commun. 1991;  175 752-758
  • 34 Grankvist K, Marklund S L, Taljedal I B. Cu, Zn-superoxide dismutase, Mn-superoxide dismutase, catalase and glutathione peroxidase in pancreatic islets and other tissues in the mouse.  Biochem J. 1981;  199 393-398
  • 35 Paolisso G, D’Amore A, di Maro G, Galzerano D, Tesauro P, Varricchio M, D’Onofrio F. Evidence for a relationship between free radicals and insulin action in the elderly.  Metabolism. 1993;  42 659-663
  • 36 Hotta M, Tashiro F, Ikegami H, Niwa H, Ogihara T, Yodoi J, Miyazaki J. Pancreatic β cell-specific expression of thioredoxin, an antioxidative and antiapoptotic protein, prevents autoimmune and streptozotocin-induced diabetes.  J Exp Med. 1998;  188 1445-1451
  • 37 Pekkari K, Avila-Carino J, Bengtsson A, Gurunath R, Scheynius A, Holmgren A. Truncated thioredoxin (TRX80) induces production of interleukin-12 and enhances CD 14 expression in human monocytes.  Blood. 2001;  97 3184-3190
  • 38 Trembleau S, Germann T, Gately M K, Adorini L. The role of IL-12 in the induction of organ-specific autoimmune diseases.  Immunol Today. 1995;  16 383-386

Y. Kakisaka

Third Department of Internal Medicine · Kyoto Prefectural University of Medicine ·

Kawaramachi-Hirokoji, Kamigyo-ku · Kyoto 602-8566 · Japan

Phone: + 81 (75) 251-5519

Fax: + 81 (75) 251-0710

Email: yuko@sun.kpu-m.ac.jp

    >