Plant Biol (Stuttg) 2002; 4(2): 181-189
DOI: 10.1055/s-2002-25733
Review Article
© Georg Thieme Verlag Stuttgart · New York

Stable Isotopes and Carbon Cycle Processes in Forests and Grasslands

J. R. Ehleringer 1 , D. R. Bowling 1 , L. B. Flanagan 2 , J. Fessenden 1 , B. Helliker 1 , L. A. Martinelli 3 , J. P. Ometto 1, 3
  • 1 Department of Biology, University of Utah, Salt Lake City, USA
  • 2 Department of Biological Sciences, University of Lethbridge, 4401 University Drive, Lethbridge, Alberta, T1K 3M4, Canada
  • 3 Centro de Energia Nuclear na Agricultura, Av. Centenário 303, Cep 13416-000 Piracicaba SP, Brazil
Further Information

Publication History

May 17, 2001

January 22, 2002

Publication Date:
26 April 2002 (online)

Abstract

Scaling and partitioning are frequently two difficult challenges facing ecology today. With regard to ecosystem carbon balance studies, ecologists and atmospheric scientists are often interested in asking how fluxes of carbon dioxide scale across the landscape, region and continent. Yet at the same time, physiological ecologists and ecosystem ecologists are interested in dissecting the net ecosystem CO2 exchange between the biosphere and the atmosphere to achieve a better understanding of the balance between photosynthesis and respiration within a forest. In both of these multiple-scale ecological questions, stable isotope analyses of carbon dioxide can play a central role in influencing our understanding of the extent to which terrestrial ecosystems are carbon sinks. In this synthesis, we review the theory and present field evidence to address isotopic scaling of CO2 fluxes. We first show that the 13C isotopic signal which ecosystems impart to the atmosphere does not remain constant over time at either temporal or spatial scales. The relative balances of different biological activities and plant responses to stress result in dynamic changes in the 13C isotopic exchange between the biosphere and atmosphere, with both seasonal and stand-age factors playing major roles influencing the 13C biosphere-atmosphere exchange. We then examine how stable isotopes are used to partition net ecosystem exchange fluxes in order to calculate shifts in the balance of photosynthesis and respiration. Lastly, we explore how fundamental differences in the 18O isotopic gas exchange of forest and grassland ecosystems can be used to further partition terrestrial fluxes.

References

  • 1 Bakwin,  P. S.,, Tans,  P. P.,, White,  J. W. C.,, and Andres,  R. J.. (1998)<YR>;  Determination of the isotopic (13C/12C) discrimination by terrestrial biology from a global network of observations.  Global Biogeochemical Cycles. 12 555-562
  • 2 Baldocchi,  D.,, Valentini,  R.,, Running,  S.,, Oechel,  W.,, and Dahlman,  R.. (1996)<YR>;  Strategies for measuring and modelling carbon dioxide and water vapour fluxes over terrestrial ecosystems.  Global Change Biology. 2 159-168
  • 3 Bousquet,  P.,, Peylin,  P.,, Ciais,  P.,, Le Quére,  C.,, Friedlingstein,  P.,, and Tans,  P. P.. (2000)<YR>;  Regional changes in carbon dioxide fluxes of land and oceans since 1980.  Science. 290 1342-1346
  • 4 Bowling,  D. R.,, Tans,  P. P.,, and Monson,  R. K.. (2001)<YR>;  Partioning net ecosystem carbon exchange with isotopic fluxes of CO2.  Global Change Biology. 7 127-145
  • 5 Buchmann,  N.,, Kao,  W. Y.,, and Ehleringer,  J. R.. (1997)<YR>;  Influence of stand structure on carbon-13 of vegetation, soils, and canopy air within deciduous and evergreen forests in Utah, United States.  Oecologia. 110 109-119
  • 6 Casperson,  J. P.,, Pacala,  S. W.,, Jenkins,  J. C.,, Hurtt,  G. C.,, Moorcroft,  P. R,, and Birdsey,  R. A.. (2000)<YR>;  Contributions of land-use history to carbon accumulation in U.S. forests.  Science. 290 1148-1151
  • 7 Ciais,  P.,, Friedlingstein,  P.,, Schimel,  D. S.,, and Tans,  P. P.. (1999)<YR>;  A global calculation of the δ13C of soil respired carbon: implications for the biospheric uptake of anthropogenic CO2.  Global Biogeochemical Cycles. 13 519-530
  • 8 Ciais,  P.,, and Meijer,  H. A.J.. (1998)<YR> The 18O/16O isotope ratio of atmospheric CO2, and its role in global carbon cycle research. Stable isotopes. Griffiths, H., ed. Oxford; BIOS Scientific Publishers pp. 409-431
  • 9 Ciais,  P.,, Tans,  P. P.,, Trolier,  M.,, White,  J. W. C.,, and Francey,  R. J.. (1995)<YR>;  A large northern hemisphere terrestrial CO2 sink indicated by the 13C/12C ratio of atmospheric CO2.  Science. 269 1098-1102
  • 10 Collatz,  G. J.,, Berry,  J. A.,, and Clark,  J. S.. (1998)<YR>;  Effects of climate and atmospheric CO2 partial pressure on the global distribution of C4 grasses: present, past ,and future.  Oecologia. 114 441-454
  • 11 Craig,  H., and Gordon,  L. I.. (1965)<YR> Deuterium and oxygen 18 variations in the ocean and marine atmosphere. Stable Isotopes in Oceanographic Studies and Paleotemperatures. Tongiorigi, E., ed. Pisa; Consiglio Nazionale Delle Ricerche Laboratorio di Geologia Nucleare pp. 9-130
  • 12 Ehleringer,  J. R., and Cooper,  T. A.. (1988)<YR>;  Correlations between carbon isotope ratio and microhabitat in desert plants.  Oecologia. 76 562-566
  • 13 Ehleringer,  J. R.,, Field,  C. B.,, Lin,  Z. F.,, and Kuo,  C. Y.. (1986)<YR>;  Leaf carbon isotope and mineral composition in subtropical plants along an irradiance cline.  Oecologia. 70 520-526
  • 14 Ehleringer,  J. R.,, Hall,  A. E.,, and Farquhar  G. D.. (1993)<YR> Stable isotopes and plant carbon/water relations. San Diego; Academic Press 555 p
  • 15 Enting,  I. G.,, Trudinger,  C. M.,, and Francey,  R. J.. (1995)<YR>;  A synthesis inversion of the concentration and δ13C of atmospheric CO2.  Tellus. 47 B 35-52
  • 16 Falge,  E.,, Baldocchi,  D.,, Oldson,  R.,, Anthoni,  P.,, Aubinet,  M.,, Bernhofer,  C.,, Burba,  G.,, Ceulemans,  R.,, Clement,  R., Dolman,  H.,, Granier,  A.,, Gross,  P.,, Grünwald,  T.,, Hollinger,  D.,, Jensen,  N.,, Katul,  G.,, Keronen,  P.,, Kowalski,  A.,, Lai,  C. T.,, Law,  B. E.,, Meyers,  T.,, Moncrieff,  J.,, Moors,  E.,, Munger,  J. W.,, Pilegaard,  K.,, Rannik,  Ü.,, Rebmann,  C.,, Suyker,  A.,, Tenhunen,  J.,, Tu,  K.,, Verma,  S.,, Vesala,  T.,, Wilson,  K.,, and Wofsy,  S.. (2001)<YR>;  Gap filling strategies for long term energy flux data sets.  Agricultural and Forest Meteorology. 107 71-77
  • 17 Farquhar,  G. D.,, Ehleringer,  J. R.,, and Hubick,  K. T.. (1989)<YR>;  Carbon isotope discrimination and photosynthesis.  Annual Review of Plant Physiology and Plant Molecular Biology. 40 503-537
  • 18 Farquhar,  G. D.,, Lloyd,  J.,, Taylor,  J. A.,, Flanagan,  L. B.,, Syversten,  J. P.,, Hubick,  K. T.,, Wong,  S. C.,, and Ehleringer,  J. R.. (1993)<YR>;  Vegetation effects on the isotopic composition of oxygen in atmospheric CO2.  Nature. 363 439-443
  • 19 Farquhar,  G. D.,, O'Leary,  M. H.,, and Berry,  J. A.. (1982)<YR>;  On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves.  Australian Journal of Plant Physiology. 9 121-137
  • 20 Farquhar,  G. D., and Richards,  R. A.. (1984)<YR>;  Isotopic composition of plant carbon correlates with water-use efficiency of wheat genotypes.  Australian Journal of Plant Physiology. 11 539-552
  • 21 Fessenden,  J. E., and Ehleringer,  J. R.. (2002 a)<YR>;  Age-dependent variations in δ13C of ecosystem respiration across a coniferous forest chronosequence in the Pacific Northwest.  Tree Physiology. 22 159-167
  • 22 Fessenden,  J. E., and Ehleringer,  J. R.. (2002 b)<YR>;  Seasonal dependence of variations in δ13C of ecosystem respiration across a coniferous forest chronosequence in the Pacific Northwest.  Oecologia. in review
  • 23 Flanagan,  L. B.,, Brooks,  J. R.,, Varney,  G. T.,, Berry,  S. C.,, and Ehleringer,  J. R.. (1996)<YR>;  Carbon isotope discrimination during photosynthesis and the isotope ratio of respired CO2 in boreal ecosystems.  Global Biogeochemical Cycles. 10 629-640
  • 24 Flanagan,  L. B.,, Comstock,  J. P.,, and Ehleringer,  J. R.. (1991)<YR>;  Comparison of modeled and observed environmental influences on the stable oxygen and hydrogen isotope composition of leaf water in Phaseolus vulgaris L.  Plant Physiology. 96 588-596
  • 25 Flanagan,  L. B., and Ehleringer,  J. R.. (1997)<YR>;  Ecosystem - atmosphere CO2 exchange: interpreting signals of change using stable isotope ratios.  Trens in Ecology and Evolution. 13 10-14
  • 26 Fung,  I.,, Field,  C. B.,, Berry,  J. A.,, Thompson,  M. V.,, Randerson,  J. T.,, Malmström,  C. M.,, Vitousek,  P. M.,, Collatz,  G. J.,, Sellers,  P. J.,, Randall,  D. A.,, Denning,  A. S.,, Badeck,  F.,, and John,  J.. (1997)<YR>;  Carbon 13 exchanges beween the atmosphere and the biosphere.  Global Biogeochemical Cycles. 11 507-533
  • 27 Gat,  J. R., and Bowser,  C.. (1991)<YR> The heavy isotope enrichment of water in coupled evaporative systems. Stable Isotope Geochemistry: A Tribute to Samuel Epstein. Taylor, H. P. and O'Neil, J. R., eds. The Geochemical Society Special Publication 3: pp. 159-168
  • 28 Gillon,  J. S., and Yakir,  D.. (2000)<YR>;  Naturally low carbonic anhydrase activity in C4 and C3 plants limits discrimination against C18OO during photosynthesis.  Plant Cell and Environment. 23 903-915
  • 29 Gillon,  J. S., and Yakir,  D.. (2001)<YR>;  Influence of carbonic anhydrase activity in terrestrial vegetation on the 18O content of atmospheric CO2.  Science. 291 2584-2587
  • 30 Goulden,  M. L.,, Munger,  J. W.,, Fan,  S.-M.,, Daube,  B. C.,, and Wofsy,  S. C.. (1996)<YR>;  Exchange of carbon dioxide by a deciduous forest: response to interannual climate variability.  Science. 271 1576-1578
  • 31 Guy,  R. D.,, Reid,  D. M.,, and Krouse,  H. R.. (1980)<YR>;  Shifts in carbon isotope ratios of two C3 halophytes under natural and artificial conditions.  Oecologia. 44 241-247
  • 32 Helliker,  B. R., and Ehleringer,  J. R.. (2000)<YR>;  Establishing a grassland signature in veins: 18O in the leaf water of C3 and C4 grasses.  Proceedings of the National Academy of Science. 97 7894-7898
  • 33 Hubbard,  R. M.,, Bond,  B. J.,, and Ryan,  M. G.. (1998)<YR>;  Evidence that hydraulic limitation explains differences in photosynthesis between young and old Pinus ponderosa.  Tree Physiology. 19 165-172
  • 34 Keeling,  C. D.. (1958)<YR>;  The concentration and isotopic abundances of atmospheric carbon dioxide in rural areas.  Geochimica et Cosmochimica Acta. 13 322-334
  • 35 Keeling,  C. D.,, Chin,  J. F. S.,, and Whorf,  T. P.. (1996)<YR>;  Increased activity of northern vegetation inferred from atmospheric CO2 measurements.  Nature. 382 146-148
  • 36 Keeling,  C. D.,, Whorf,  T. P.,, Wahlen,  M.,, and van der Pflicht,  J.. (1995)<YR>;  Interannual extremes in the rate of rise of atmospheric carbon dioxide since 1980.  Nature. 375 666-670
  • 37 Lin,  G. H., and Ehleringer,  J. R.. (1997)<YR>;  Carbon isotopic fractionation does not occur during dark respiration in C3 and C4 plants.  Plant Physiology. 114 391-394
  • 38 Lloyd,  J.,, and Farquhar,  G. D.. (1994)<YR>;  13C discrimination during CO2 assimilation by the terrestrial biosphere.  Oecologia. 99 201-215
  • 39 Lloyd,  J.,, Kruijt,  B.,, Hollinger,  D. Y.,, Grace,  J.,, Francey,  R. J., Wong,  S. C.,, Kelliher,  F. M.,, Miranda,  A. C.,, Gash,  K. H. C.,, Vygodskaya,  N. N.,, Wright,  I. R.,, Miranda,  H. S.,, Farquhar,  G. D.,, and Schulze,  E.-D.. (1996)<YR>;  Vegetation effects on the isotopic composition of atmospheric CO2 at local and regional scales: theoretical aspects and a comparison of atmospheric CO2 at local and regional scales: theoretical aspects and a comparison between a rain forest in Amazonia and a boreal forest in Siberia.  Australian Journal of Plant Physiology. 23 371-399
  • 40 Majoube,  M.. (1971)<YR>;  Fractionnement en oxygene 18 et un deuterium entre l'eau et sa vapeur.  Journal de Chimie et Physique. 58 1423-1436
  • 41 McDowell,  N. G.,, Phillips,  N.,, Lunch,  C.,, Bond,  B. J.,, and Ryan,  M. J.. (2001)<YR>;  Hydraulic limitation in large, old Douglas-fir trees.  Tree Physiology. in press
  • 42 Panek,  J. A.. (1996)<YR>;  Correlations between stable carbon-isotope abundance and hydraulic conductivity in Douglas-fir across a climate gradient in Oregon, USA.  Tree Physiology. 16 747-755
  • 43 Ramankutty,  N., and Foley,  J. A.. (1999)<YR>;  Estimating historical changes in global land cover: Croplands from 1700 to 1992.  Global Biogeochemical Cycles. 13 997-1027
  • 44 Randerson,  J. T.,, Still,  C. J.,, Fung,  I. Y.,, and White,  J. C.. (2000)<YR> Seasonal and interannual changes in Δ13C discrimination by arctic and boreal biomes.  EOS Transactions AGU, 81 (48), Fall Meet. Supplement
  • 45 Roden,  J. S.,, and Ehleringer,  J. R.. (1999)<YR>;  Observations of hydrogen and oxygen isotopes in leaf water confirm the Craig-Gordon Model under wide-ranging environmental conditions.  Plant Physiology. 120 1165-1173
  • 46 Ryan,  M. G.,, Binkley,  D.,, and Fownes,  J. H.. (1997)<YR>;  Age-related declines in forest productivity: pattern and process.  Advances in Ecological Research. 27 213-262
  • 47 Sage,  R. F., and Monson,  R. K.. (1999)<YR> C4 plant biology. San Diego; Academic Press p. 596
  • 48 Tans,  P. P.,, Bakwin,  P. S.,, and Guenther,  D. W.. (1996)<YR>;  A feasible global carbon cycle observing system: a plan to decipher today's carbon cycle based on observations.  Global Change Biology. 2 309-318
  • 49 Tans,  P. P.,, Berry,  J. A.,, and Keeling,  R. F.. (1993)<YR>;  Oceanic 13C/12C observations - a new window on ocean CO2 uptake.  Global Biogeochemical Cycles. 7 353-368
  • 50 Tans,  P. P.,, Fung,  I. Y.,, and Takahashi,  T.. (1990)<YR>;  Observational constraints on the global atmospheric CO2 budget.  Science. 247 1431-1438
  • 51 Tian,  H.,, Melillo,  J. M.,, Kicklighter,  D. W.,, McGuire,  A. D.,, Helfrich III,  J. V. K.,, Moore III,  B.,, Vörösmarty,  C. J.. (1998)<YR>;  Effect of interannual climate variability on carbon storage in Amazonian ecosystems.  Nature. 396 664-667
  • 52 Valentini,  R., . et al. . (2000)<YR>;  Respiration as the main determinant of carbon balance in European forests.  Nature. 404 861-865
  • 53 Winner,  W. E.,, Berry,  J. A.,, Bond,  B. J.,, Cooper,  C.,, Ehleringer,  J. R.,, Fessenden,  J.,, Lamb,  B.,, McDowell,  N.,, Phillips,  N.,, Thomas,  S. C.,, and Williams,  M.. (2001)<YR>;  Mechanisms of canopy carbon gain and water use: analysis of 450-year-old conifers in the Pacific Northwest.  Ecosystems. in review
  • 54 Wofsy,  S. C.,, Goulden,  M. L.,, Munger,  J. W.,, Fan,  S.-M.,, Bakwin,  P. S.,, Daube,  B. C.,, Bassow,  L.,, and Bazzaz  F. A.. (1993)<YR>;  Net exchange of CO2 in a mid-latitude forest.  Science. 260 1314-1317
  • 55 Yakir,  D., and Wang,  X. F.. (1996)<YR>;  Fluxes of CO2 and water between terrestrial vegetation and the atmosphere estimated from isotope measurements.  Nature. 380 515-517
  • 56 Yoder,  B. J.,, Ryan,  M. G.,, Waring,  R. H.,, Schoettle,  A. W.,, and Kaufmann,  M. R.. (1994)<YR>;  Evidence of reduced photosynthetic rates in old trees.  Forest Science. 40 513-527

J. R. Ehleringer

Department of Biology
University of Utah

257 South 1400 East
Salt Lake City
Utah 84112-0840
USA

Email: ehleringer@biology.utah.edu

Section Editor: C. B. Osmond

    >