Plant Biol (Stuttg) 2002; 4(2): 266-272
DOI: 10.1055/s-2002-25739
Original Paper
Georg Thieme Verlag Stuttgart ·New York

Repression of α-Amylase Activity by Anoxia in Grains of Barley is Independent of Ethanol Toxicity or Action of Abscisic Acid

E. Loreti 1 , P. Vernieri 1 , A. Alpi 1 , P. Perata 2
  • 1 Department of Crop Plant Biology, University of Pisa, Via Mariscoglio 34, 56124 Pisa, Italy
  • 2 Department of Agricultural Sciences, University of Modena and Reggio Emilia, Reggio Emilia, Italy
Further Information

Publication History

August 1, 2001

January 16, 2002

Publication Date:
26 April 2002 (online)

Abstract

We studied the effects of anoxia on α-amylase induction, comparing rice (Oryza sativa L.) and barley (Hordeum vulgare L.) grains. While gibberellic acid (GA3) induces α-amylase in rice half-grains under either aerobic or anaerobic conditions, barley half-grains are insensitive to this hormone when applied under anoxia. The possible repressive role of ethanol and abscisic acid (ABA) was investigated. Exogenously added ethanol at concentrations mirroring those found in anaerobically treated tissues was unable to repress α-amylase. The level of ABA in anoxic tissues was found to be much lower than the threshold for α-amylase repression. Overall, the results indicated that these two compounds cannot be held responsible for the failure of barley grains to respond to gibberellic acid. Furthermore, anoxia repressed the induction of α-amylase downstream of the slender mutation, indicating that the repression is independent of effects related to gibberellin perception. Overall, the results suggested that the ability of rice to respond to gibberellins under anoxia is an adaptative trait, independent of known negative regulators of α-amylase induction.

Abbreviations

GA: gibberellin

GA3: gibberellic acid

References

  • 01 Alpi,  A., and Beevers,  H.. (1983);  Effects of O2 concentration on rice seedlings.  Plant Physiology. 71 30-34
  • 02 Armstrong,  W.,, Braendle,  R.,, and Jackson,  M. B.. (1994);  Mechanisms of flood tolerance in plants.  Acta Botanica Neerlandica. 43 307-358
  • 03 Bernt,  E., and Gutman,  I.. (1974) Ethanol determination with alcohol dehydrogenase and NAD. Methods of enzymatic analysis. Bergmeyer H. U., ed. New York; Academic Press pp. 1499-1505
  • 04 Bethke,  P. C.,, Schuurink,  R.,, and Jones,  R. L.. (1997);  Hormonal signaling in cereal aleurone.  Journal of Experimental Botany. 48 1337-1356
  • 05 Chandler,  P. M.. (1988);  Hormonal regulation of gene expression in the “slender” mutant of barley.  Planta. 174 115-120
  • 06 Crawford,  R. M. M., and Braendle,  R.. (1996);  Oxygen deprivation stress in a changing environment.  Journal of Experimental Botany. 47 145-159
  • 07 Croker,  S. J.,, Hedden,  P.,, Lenton,  J. R.,, and Stoddart,  J. L.. (1990);  Comparison of gibberellins in normal and slender barley seedlings.  Plant Physiology. 94 194-200
  • 08 de Bruxelles,  G. L.,, Peacock,  W. J.,, Dennis,  E. S.,, and Dolferus,  R.. (1996);  Abscisic acid induces the alcohol dehydrogenase gene in Arabidopsis. .  Plant Physiology. 111 381-391
  • 09 Drew,  M. C.. (1997);  Oxygen deficiency and root metabolism: injury and acclimation under hypoxia and anoxia.  Annual Review of Plant Physiology and Plant Molecular Biology. 48 223-250
  • 10 Ellis,  M. H.,, Dennis,  E. S.,, and Peacock,  W. J. . (1999);  Arabidopsis roots and shoots have different mechanisms for hypoxic stress tolerance.  Plant Physiology. 119 57-64
  • 11 Gausing,  K., and Barkardottir,  R.. (1986);  Structure and expression of ubiquitin genes in higher plants.  European Journal of Biochemistry. 158 57-62
  • 12 Guglielminetti,  L.,, Yamaguchi,  J.,, Perata,  P.,, and Alpi,  A.. (1995);  Amylolytic activities in cereal seeds under aerobic and anaerobic conditions.  Plant Physiology. 109 1069-1076
  • 13 Hanson,  A. D., and Jacobsen,  J. V.. (1984);  Control of lactate dehydrogenase, lactate glycolysis and α-amylase by O2 deficit in barley aleurone layers.  Plant Physiology. 75 566-572
  • 14 Hanson,  A. D.,, Jacobsen,  J. V.,, and Zwar,  J. A.. (1984);  Regulated expression of three alcohol dehydrogenase genes in barley aleurone layers.  Plant Physiology. 75 573-581
  • 15 Hooley,  R.. (1994);  Gibberellins: perception, transduction and responses.  Plant Molecular Biology. 26 1529-1555
  • 16 Huang,  N.,, Koizumi,  N.,, Reinl,  S.,, and Rodriguez,  R. L.. (1990);  Structural organization and differential expression of rice α-amylase genes.  Nucleic Acids Research. 18 7007-7014
  • 17 Hwang,  Y.-S.,, Thomas,  B. R.,, and Rodriguez,  R. L.. (1999);  Differential expression of rice α-amylase genes during seedling development under anoxia.  Plant Molecular Biology. 40 911-920
  • 18 Hwang,  Y.-S.,, and VanToai,  T. T.. (1991);  Abscisic acid induces anaerobiosis tolerance in corn.  Plant Physiology. 97 593-597
  • 19 Jackson,  M. B.. (1994);  Hormone action and plant adaptations to poor aeration.  Proceedings of the Royal Society of Edinburgh. 102 B 391-405
  • 20 Jones,  R. L., and Varner,  J. E.. (1967);  The bioassay of gibberellins.  Planta. 72 53-59
  • 21 Kato-Noguchi,  H.. (2000);  Induction of alcohol dehydrogenase by plant hormones in alfalfa seedlings.  Plant Growth Regulation. 30 1-3
  • 22 Kennedy,  R. A.,, Rumpho,  M. E.,, and Fox,  T. C.. (1992);  Anaerobic metabolism in plants.  Plant Physiology. 100 1-6
  • 23 Lanahan,  M. B., and Ho,  T.-H. D.. (1988);  Slender barley: a constitutive gibberellin-response mutant.  Planta. 175 107-114
  • 24 Mitsunaga,  S., and Yamaguchi,  J.. (1993);  Induction of α-amylase is repressed by uniconazole, an inhibitor of the biosynthesis of gibberellin, in a dwarf mutant of rice, Waito-C.  Plant Cell Physiology. 34 243-249
  • 25 Mundy,  J., and Chua,  N.-H.. (1988);  Abscisic acid and water-stress induce the expression of a novel rice gene.  EMBO Journal. 7 2279-2286
  • 26 Nie,  X., and Hill,  R. D.. (1997);  Mitochondrial respiration and hemoglobin gene expression in barley aleurone tissue.  Plant Physiology. 114 835-840
  • 27 Nolan,  R. C., and Ho,  D. T.-H.. (1988);  Hormonal regulation of gene expression in barley aleurone layers. Induction and suppression of specific genes.  Planta. 174 551-560
  • 28 Perata,  P., and Alpi,  A.. (1993);  Plant responses to anaerobiosis.  Plant Science. 93 1-17
  • 29 Perata,  P.,, Geshi,  N.,, Yamaguchi,  J.,, and Akazawa,  T.. (1993);  Effect of anoxia on the induction of α-amylase in cereal seeds.  Planta. 191 402-408
  • 30 Perata,  P.,, Guglielminetti,  L.,, and Alpi,  A.. (1996);  Anaerobic carbohydrate metabolism in wheat and barley, two anoxia-intolerant cereal seeds.  Journal of Experimental Botany. 47 999-1006
  • 31 Perata,  P.,, Loreti,  E.,, Guglielminetti,  L.,, and Alpi,  A.. (1998);  Carbohydrate metabolism and anoxia tolerance in cereal grains.  Acta Botanica Neerlandica. 47 269-283
  • 32 Perata,  P.,, Matsukura,  C.,, Vernieri,  P.,, and Yamaguchi,  J.. (1997);  Sugar repression of a gibberellin-dependent signaling pathway in barley embryos.  Plant Cell. 9 2197-2208
  • 33 Perata,  P.,, Picciarelli,  P.,, and Alpi,  A.. (1990);  Patterns of variations in abscisic acid content in suspensors, embryos, and integuments of developing Phaseolus coccineus seeds.  Plant Physiology. 94 1776-1780
  • 34 Perata,  P.,, Pozueta-Romero,  J.,, Akazawa,  T.,, and Yamaguchi,  J.. (1992);  Effect of anoxia on starch breakdown in rice and wheat seeds.  Planta. 188 611-618
  • 35 Ricard,  B.,, Couee,  I.,, Raymond,  P.,, Saglio,  P. H.,, Saint-Ges,  V.,, and Pradet,  A.. (1994);  Plant metabolism under hypoxia and anoxia.  Plant Physiology and Biochemistry. 32 1-10
  • 36 Rogers,  J. C.. (1985);  Two barley α-amylase gene families are regulated differently in aleurone cells.  Journal of Biological Chemistry. 260 3731-3738
  • 37 Sauter,  M., and Kende,  H.. (1992);  Gibberellin-induced growth and regulation of the cell division cycle in deepwater rice.  Planta. 188 362-368
  • 38 Vartapetian,  B. B., and Jackson,  M. B.. (1997);  Plant adaptation to anaerobic stress.  Annals of Botany. 79 3-20
  • 39 Vernieri,  P.,, Perata,  P.,, Armellini,  D.,, Bugnoli,  M.,, Presentini,  R.,, Lorenzi,  R.,, Ceccarelli,  N.,, Alpi,  A.,, and Tognoni,  F.. (1989);  Solid phase radioimmunoassay for the quantitation of abscisic acid in plant crude extracts using a new monoclonal antibody.  Journal Plant Physiology. 134 441-446
  • 40 Voesenek,  L. A. C. J., and Van der Veen,  R.. (1994);  The role of phytohormones in plant stress: too much or too little water.  Acta Botanica Neerlandica. 43 91-127
  • 41 Walker-Simmons,  M. K.,, Reaney,  M. T. J.,, Quarrie,  S. A.,, Perata,  P.,, Vernieri,  P.,, and Abrams,  S. R.. (1991);  Monoclonal antibody recognition of abscisic acid analogs.  Plant Physiology. 95 46-51

P. Perata

Department of Agricultural Sciences
University of Modena and Reggio Emilia

Via Kennedy 17
42100 Reggio Emilia
Italy

Email: perata.pierdomenico@unimo.it.

Section Editor: L. A. C. J. Voesenek

    >