Plant Biol (Stuttg) 2002; 4(2): 167-180
DOI: 10.1055/s-2002-25743
Review Article
Georg Thieme Verlag Stuttgart ·New York

A Model for Individual Tree Development Based on Physiological Processes

R. Grote, H. Pretzsch
  • Chair of Forest Yield Science, Department of Ecosystem and Landscape Management, TU Munich, Freising, Germany
Further Information

Publication History

May 17, 2001

February 28, 2002

Publication Date:
26 April 2002 (online)

Abstract

A tree growth model is presented which calculates the 3D development of trees and stands in dependence on their individual carbon, water and nitrogen balance. The availability of energy, soil water and nutrients is estimated from field data at the scale of crown and root system fractions, taking into account the individual neighbourhood. The model includes a simple estimation of radiation distribution and the simulation of carbon and nutrient exchange. Senescence is represented by compartment-specific turnover rates. Allocation of carbon and nitrogen into foliage, fine roots, branches, coarse roots, and the stem is calculated according to functional balance and pipe model principles. Dimensional changes are calculated annually according to the distribution of net assimilation. The model describes tree development as a response to individual environmental conditions and changes environmental conditions with individual tree development. Due to this feedback loop, environmental influences can be assessed in any kind of species mixture or stand structure. Furthermore, the physiological-based approach ensures that the model can be used for investigations of complex environmental changes, e.g. CO2 concentration, precipitation, temperature and nitrogen deposition. Thus, it is particularly suitable to analyse field investigations and to support the cognition process on the ecology of forests. It could also be used, however, to estimate forest responses to given environmental scenarios.

References

  • 01 Acevedo,  M. F.,, Urban,  D. L.,, and Ablan,  M.. (1995);  Transition and gap models of forest dynamics.  Ecological Applications. 5 (4) 1040-1055
  • 02 Balandier,  P.,, Lacointe,  A.,, Roux,  X. L.,, Sinoquet,  H.,, Cruiziat,  P.,, and Dizès,  S. L.. (2000);  SIMWAL: A structural-functional model simulating single walnut tree growth in response to climate and pruning.  Ann. For. Sci.. 57 571-585
  • 03 Baldwin,  J. V. C.,, Peterson,  K. D.,, Clark III,  A.,, Ferguson,  R. B.,, Strub,  M. R.,, and Bower,  D. R.. (2000);  The effects of spacing and thinning on stand and tree characteristics of 38-year old Loblolly Pine.  For. Ecol. Manage.. 137 91-102
  • 04 Bartelink,  H. H.. (1998);  Radiation interception by forest trees: a simulation study on effects of stand density and foliage clustering on absorption and transmission.  Ecol. Modell.. 105 213-225
  • 05 Bartelink,  H. H.. (2000);  A growth model for mixed forest stands.  For. Ecol. Manage.. 134 29-43
  • 06 Bossel,  H.. (1996);  TREEDYN3 forest Simulation Model.  Ecol. Modell.. 90 187-227
  • 07 Brunner,  A.. (1998);  A light model for spatially explicit forest stand models.  For. Ecol. Manage.. 107 19-46
  • 08 Cropper,  W. P. J.. (2000);  SPM2: A simulation model for slash pine (Pinus elliottii) forests.  For. Ecol. Manage.. 126 201-212
  • 09 Deleuze,  C., and Houllier,  F.. (1997);  A transport model for tree ring width.  Silva Fennica. 31 (3) 239-250
  • 10 Ek,  A. R., and Monserud,  R. A.. (1974) Trials with program FOREST: Growth and reproduction simulation for mixed species even- or uneven-aged forest stands. Growth Models for Tree and Stand Simuation. Fries, J., ed. Research Notes. Skogshögskolan, Sweden; Royal College of Forestry pp. 56-73
  • 11 Genard,  M.,, Baret,  F.,, and Simon,  D.. (2000);  A 3D peach canopy model used to evaluate the effect of tree architecture and density on photosynthesis at a range of scales.  Ecol. Modell.. 128 197-209
  • 12 Grosser,  D.. (1985/1991) Einheimische Nutzhölzer. Bonn, Düsseldorf; Centrale Marketinggesellschaft d. deutschen Agrarwirtschaft mbH, AG Holz e.V.
  • 13 Grote,  R.. (1998);  Integrating dynamic morphological properties into forest growth modeling. II. Allocation and mortality.  For. Ecol. Manage.. 111 (2/3) 193-210
  • 14 Grote,  R., and Suckow,  F.. (1998);  Integrating dynamic morphological properties into forest growth modeling. I. Effects on water balance and gas exchange.  For. Ecol. Manage.. 112 101-119
  • 15 Hasenauer,  H.,, Moser,  M.,, and Eckmüller,  O.. (1995);  Ein Programm zur Modellierung von Wachstumsreaktionen.  AFZ/Der Wald. 4 216-218
  • 16 Haxeltine,  A., and Prentice,  I. C.. (1996);  A general model for the light use efficiency of primary production by terrestrial ecosystems.  Functional Ecology. 10 551-561
  • 17 Hendrich,  C.. (2000) Ein kybernetisches Licht-Biomasse-Modell für Fichten-Buchen-Mischbestände. TU-München, München; Doktorarbeit Thesis pp. 188
  • 18 Jansen,  M.,, Martin,  P.-G.,, Sonntag,  M.,, Ditzer,  T.,, and Bossel,  H.. (1995) Modellierung von Bestandeswachstum, Stoff- und Energieumsätzen mit TREEDYN am Beispiel Solling F1. Göttingen: Forschungszentrum Waldökosysteme; Berichte des Forschungszentrums Waldökosysteme, Reihe B, Bd. 45
  • 19 Johnsen,  K.,, Samuelson,  L.,, Teskey,  R.,, McNulty,  S.,, and Fox,  T.. (2001);  Process models as tools in forestry research and management.  For. Sci.. 47 (1) 2-8
  • 20 Kellomäki,  S., and Oker-Blom,  P.. (1981);  Specific needle area of Scots pine and its dependence on light conditions inside the canopy.  Silva Fennica. 15 (2) 190-198
  • 21 Lindner,  M.,, Sievänen,  R.,, and Pretzsch,  H.. (1997);  Improving the simulation of stand structure in a forest gap model.  For. Ecol. Manage.. 95 183-195
  • 22 List,  R., and Küppers,  M.. (1998) Light Climate and Assimilate Distribution within Segment Oriented Woody Plants Growth in the Simulation Program MADEIRA. Individual-based structural and functional models in ecology. Kastner-Maresch, A., Kurth, W., Sonntag, M., and Breckling, B., eds. Bayreuth; Bayreuther Forum Ökologie. Bayreuther Institut für Terrestrische Ökosystemforschung pp. 141-152
  • 23 Liu,  S.. (1997);  A new model for the prediction of rainfall interception in forest canopies.  Ecol. Modelling. 99 151-159
  • 24 Liu,  S.,, Munson,  R.,, and Johnson,  D. W., et al.. (1992) The nutrient cycling model (NuCM). Atmospheric Deposition and Forest Nutrient Cycling, Ecological Studies. Johnson, D. W. and Lindberg, S. E., eds. New York; Springer pp. 583-609
  • 25 Mäkelä,  A.. (1990) Modeling structural-functional relationships in whole-tree growth: Resource allocation. Process modeling of forest growth responses to environmental stress. Dixon, R. K., Meldahl, R. S., Ruark, G. A., and Warren, W. G., eds. Portland, Oregon, USA; Timber Press, Inc. pp. 81-95
  • 26 Mäkelä,  A., and Hari,  P.. (1986);  Stand growth model based on carbon uptake and allocation in individual trees.  Ecol. Modell.. 33 205-229
  • 27 Miina,  J., and Pukkula,  T.. (2000);  Using numerical optimization for specifying individual-tree competition models.  For. Sci.. 46 (2) 277-283
  • 28 Mohren,  G. M. J.,, Bartelink,  H. H.,, Jorritsma,  I. T. M.,, and Kramer,  K.. (1993) A process-based growth model (FORGRO) for analysis of forest dynamics in relation to environmental factors. European Forest Reserves. Proc. of the European Forest Reserves Workshop, 6 - 8 May 1992. Broekmeijer, M., Vos, W., and Koop, H. G. J. M., eds. Wageningen, The Netherlands; Pudoc pp. 273-280
  • 29 Monteith,  J. L.. (1965) Evaporation and environment. The State and Movement of Water in Living Organisms. Fogg , G. E., ed. London; Symp. Soc. Exp. Biol., Academic Press pp. 205-234
  • 30 Perttunen,  J.,, Sievänen,  R.,, Nikinmaa,  E.,, Salminen,  H.,, Saarenmaa,  H.,, and Väkevä,  J.. (1996);  LIGNUM: A tree model based on simple structural units.  Annals of Botany. 77 87-98
  • 31 Pretzsch,  H.. (1992);  Modellierung der Kronenkonkurrenz von Fichte und Buche in Rein- und Mischbeständen.  Allg. Forst- und Jagdztg.. 163 (11/12) 203-213
  • 32 Pretzsch,  H.. (2001) Modellierung des Waldwachstums. Berlin; Parey pp. 341
  • 33 Pretzsch,  H.,, Kahn,  M.,, and Grote,  R.. (1998);  Die Fichten-Buchen-Mischbestände des Sonderforschungsbereiches “Wachstum oder Parasitenabwehr?”.  im Kranzberger Forst. Forstw. Cbl.. 117 241-257
  • 34 Pretzsch,  H.,, Biber,  P.,, and Dursky,  J.. (2002);  The single tree-based stand simulator SILVA: Construction, application and evaluation.  For. Ecol. Manage.. in press
  • 35 Rastetter,  E. B.,, Ryan,  M. G.,, Shaver,  G. R.,, Melillo,  J. M.,, Nadelhoffer,  K. J.,, Hobbie,  J. E.,, and Aber,  J. D.. (1991);  A general biogeochemical model describing the responses of the C and N cycles in terrestrial ecosystems to changes in CO2, climate, and N deposition.  Tree Physiol.. 9 101-126
  • 36 Raulier,  F.,, Ung,  C.-H.,, and Begin,  J.. (1998);  Analytical estimation of branchwood volume in sugar maple, linked to branchiness.  Trees. 12 395-405
  • 37 Röhle,  H., and Huber,  W.. (1985);  Untersuchungen zur Methode der Ablotung von Kronenradien und der Berechnung von Kronengrundflächen.  Forstarchiv. 56. Jahrg. 238-243
  • 38 Rothe,  A., and Kreutzer,  K.. (1998);  Wechselwirkungen zwischen Fichte und Buche im Mischwald.  Allgemeine Forstzeitschrift. 15 784-787
  • 39 Running,  S. W., and Coughlan,  J. C.. (1988);  A general model of forest ecosystem processes for regional applications. I. Hydrologic balance, canopy gas exchange and primary production processes.  Ecol. Modell.. 42 125-154
  • 40 Seifert,  S.. (1998) Dreidimensionale Visualisierung des Waldwachstums. Fachhochschule München (Universität München), Freising; Diplomarbeit Thesis 133 + 25 Anhang pp.
  • 41 Shinozaki,  K.,, Yoda,  K.,, Hozumi,  K.,, and Kira,  T.. (1964);  A quantitative analysis of plant form - the pipe model theory. I. Basic analyses.  Japanese Journal of Ecology. 14 97-105
  • 42 Simioni,  G.,, Le Roux,  X.,, Gignoux,  J.,, and Sinoquet,  H.. (2000);  Treegrass: a 3D, process-based model for simulating plant interactions in tree-grass ecosystems.  Ecol. Modell.. 131 47-63
  • 43 Thornley,  J. H. M.. (1999);  Modelling stem height and diameter growth in plants.  Annals of Botany. 84 195-205
  • 44 Weller,  D. E.. (1987);  A Reevaluation of the - 3/2 power rule of plant self-thinning.  Ecological Monographs. 57 (1) 23-43
  • 45 Williams,  M.. (1996);  A three-dimensional model of forest development and competition.  Ecol. Modell.. 89 73-98

R. Grote

Chair of Forest Yield Science
Department of Ecolosystem and Landscape Management
TU Munich

Am Hochanger 13
85354 Freising
Germany

Email: r.grote@lrz.tu-muenchen.de

Section Editor: U. Lüttge

    >