Semin Thromb Hemost 2002; 28(4): 383-392
DOI: 10.1055/s-2002-34308
Copyright © 2002 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA. Tel.: +1(212) 584-4662

Inhibition of B16-BL6 Melanoma Lung Colonies by Semisynthetic Sulfaminoheparosan Sulfates from E. coli K5 Polysaccharide

Andreina Poggi1 , Cosmo Rossi2 , Nicola Casella1 , Cristiana Bruno2 , Luisella Sturiale3 , Carla Dossi2 , Annamaria Naggi3
  • 1Laboratory of Tumor and Vascular Cell Biology
  • 2Animal Care Unit, Centro di Ricerche Farmacologiche e Biomediche, Consorzio Mario Negri Sud, Santa Maria Imbaro (Chieti)
  • 3Istituto di Ricerche Chimiche e Biochimiche ``G. Ronzoni'', Milano, Italy
Further Information

Publication History

Publication Date:
23 September 2002 (online)

ABSTRACT

Heparin (H), heparan sulfate (HS), and related glycosaminoglycans can inhibit cancer cell invasion, possibly due to their ability to interact with vascular growth factors, adhesion molecules, endoglycosidases, and signaling proteins, in addition to the well-known effects on the clotting system. We evaluated the antitumor activity of a series of semisynthetic sulfaminoheparosan sulfates (SAHSs) with different degree and distribution of sulfates, obtained by chemical modifications of the E. coli K5 polysaccharide, namely type A, B, and C compounds. B16-BL6 melanoma cells (105 cells/mouse) were injected intravenously (i.v.) in a lateral tail vein of C57BL6 mice at a dose of 0.5 mg/ mouse together with test compounds. Tumor lung nodules were significantly reduced as compared with controls only by H (95.5 ± 1.0% inhibition), SAHS-2 (84.2 ± 5.0% inhibition), and SAHS-4 (91.1 ± 4.2% inhibition), among compounds tested. SAHS-2 and SAHS-4 are type B compounds, with a sulfate/carboxylate ratio similar to that of H. A typical mammalian HS showed only 54.8% inhibition. Supersulfated low-molecular-weight heparin and heparan sulfate (ssLMWH and ssLMWHS) showed an activity similar to that of unfractionated compounds. H and SAHS-4 inhibited dose dependently B16-BL6 lung colonies, with IC-50 values of 0.05 and 0.1 mg/mouse, respectively. The relationship with ex vivo anticoagulant potency was evaluated by activated partial thromboplastin time (aPTT) on mouse plasma at different time intervals after i.v. injection (0.1 to 0.5 mg/mouse) of the compound. H showed a dose-dependent anticoagulant activity lasting up to 2 hours, whereas SAHS-4 showed a potent anticoagulant effect only at a dose of 0.5 mg/mouse. Accordingly, H but not SAHS-4 consistently inhibited B16-BL6 lung colonies when given 1 hour before tumor cells. SAHS-4 derivatives, with different size and/or affinity depleted of AT binding sites, showed an inhibitory effect on B16-BL6 melanoma similar to that of SAHS-4, suggesting that the greater antitumor effect of H was not due to AT-mediated inhibition of blood clotting. Interactions with other blood inhibitors, such as heparin cofactor II or tissue factor pathway inhibitory protein cannot be ruled out. The better effect of H may be due to persistence in the circulation and/or ability to inhibit tumor neoangiogenesis.

REFERENCES

  • 1 Donati M B. Cancer and thrombosis: from phlegmasia alba dolens to transgenic mice.  Thromb Haemost . 1995;  74 278-281
  • 2 Rickles F R, Falanga A. Molecular basis for the relationship between thrombosis and cancer.  Thromb Res . 2001;  102 V215-V224
  • 3 Poggi A, Rossi C, Beviglia L, Calabrese R, Donati M B. Platelet-tumour cell interactions. In: Joseph M, ed. The Handbook of Immunopharmacology Immunopharmacology of Platelets. London: Academic Press 1995: 151-165
  • 4 Tyrrell D J, Kilfeather S, Page C P. Therapeutic uses of heparin beyond its traditional role as an anticoagulant.  Trends Pharmacol Sci . 1995;  16 198-204
  • 5 Engelberg H. Actions of heparin that may affect the malignant process.  Cancer . 1999;  85 257-272
  • 6 Lebeau B, Chastang C, Brechot J-M. Subcutaneous heparin treatment increases survival in small cell lung cancer.  Cancer . 1994;  74 38-45
  • 7 Von Tempelhoff F G, Dietrich M, Niemann F. Blood coagulation and thrombosis in patients with ovarian malignancy.  Thromb Haemost . 1997;  77 456-461
  • 8 Zacharski L R, Ornstein D L, Mamourian A C. Low-molecular-weight heparin and cancer.  Semin Thromb Haemost . 2000;  26(Suppl 1) 69-77
  • 9 Sciumbata T, Caretto P, Pirovano P. Treatment with modified heparins inhibits experimental metastasis formation and leads, in some animals, to long-term survival.  Invasion Metastasis . 1996;  16 132-143
  • 10 Smorenburg S M, Vink R, te Lintelo M. In vivo treatment of rats with unfractionated heparin (UFH) or low molecular weight heparin (LMWH) does not affect experimentally induced colon carcinoma metastasis.  Clin Exp Metastasis . 1999;  17 451-456
  • 11 Parish C R, Coombe D R, Jakobsen K B, Bennett F A, Underwood P A. Evidence that sulphated polysaccharides inhibit tumour metastasis by blocking tumour-cell-derived heparanases.  Int J Cancer . 1987;  40 511-518
  • 12 Vlodavsky I, Mohsen M, Lider O. Inhibition of tumor metastasis by heparanase inhibiting species of heparin.  Invasion Metastasis. 1994/95;  14 290-302
  • 13 Ishai-Michaeli R, Svahn C M, Weber M. Importance of size and sulfation of heparin in release of basic fibroblast growth factor from the vascular endothelium and extracellular matrix.  Biochemistry . 1992;  31 2080-2088
  • 14 Borsig L, Wong R, Feramisco J. Heparin and cancer revisited: mechanistic connections involving platelets, P-selectin, carcinoma mucins, and tumor metastasis.  Proc Natl Acad Sci USA . 2001;  98 3352-3357
  • 15 Biswas C. Heparin and heparan sulfate binding sites on B-16 melanoma cells.  J Cell Physiol . 1988;  136 147-153
  • 16 Jacobs A L, Julian J, Sahin A A, Carson D D. Heparin/heparan sulfate interacting protein expression and functions in human breast cancer cells and normal breast epithelia.  Cancer Res . 1997;  57 5148-5154
  • 17 Coombe D R, Parish C R, Ramshaw I A, Snowden J M. Analysis of the inhibition of tumour metastasis by sulphated polysaccharides.  Int J Cancer . 1987;  39 82-88
  • 18 Casella N, Rossi C, Calabrese R. Effect of heparins with different degree of sulphation on B16BL6 melanoma lung colonies in mice (Abst).  Thromb Haemost . 1995;  73 964
  • 19 Casu B, Grazioli G, Razi N. Heparin-like compounds prepared by chemical modification of capsular polysaccharide from E coli K5. Carbohydr Res .  1994;  263 271-284
  • 20 Razi N, Feyzi E, Bjork I. Structural and functional properties of heparin analogues obtained by chemical sulphation of Escherichia coli K5 capsular polysaccharide.  Biochem J . 1995;  309 465-472
  • 21 Rossi C, Poggi A, Dossi C. Inhibitory effect of semisynthetic sulfaminoheparansulfates on B16-BL6 melanoma lung colonies in mice.  Clin Exp Metastasis . 1996;  14(Suppl 1) 87-88
  • 22 Naggi A, Torri G, Casu B. ``Supersulfated'' heparin in fragments, a new type of low molecular weight heparin. Physico-chemical and pharmacological-properties.  Biochem Pharmacol . 1987;  36 1895-1900
  • 23 Gigli M, Ghiselli G, Torri G, Naggi A, Rizzo V. A comparative study of low-density lipoprotein interaction with glycosaminoglycans.  Biochim Biophys Acta . 1993;  1167 211-217
  • 24 Bertellini G, Butti A, Piantanida B. Studies on glycoproteins of animal origin and their derivatives.  Arzneimittelforschung . 1971;  21 247-248
  • 25 Harenberg J, De Vries X J. Characterization of heparins by high performance size exclusion liquid chromatography.  J Chromatogr . 1983;  261 287-292
  • 26 Casu B, Gennaro U. A conductimetric method for the determination of sulphate and carboxyl groups in heparin and other mucopolysaccharides.  Carbohydr Res . 1975;  39 168-176
  • 27 Casu B, Guerrini M, Naggi A. Characterization of sulfation patterns of beef and pig mucosal heparins by nuclear magnetic resonance spectroscopy.  Arzneimittelforschung . 1996;  46 472-477
  • 28 Casu B. Structure and biological activity of heparin.  Adv Carbohydr Chem Biochem . 1985;  43 51-134
  • 29 Laurent T C, Tengblad A, Thunberg L, Hook M, Lindahl U. The molecular-weight-dependence of the anti-coagulant activity of heparin.  Biochem J . 1978;  175 691-701
  • 30 Bitter T, Muir H M. Quantitative determination of uronic acids with m-hydroxydiphenyl.  Anal Biochem . 1962;  4 330-334
  • 31 Hart I R. The selection and characterization of an invasive variant of the B16 melanoma.  Am J Pathol . 1979;  97 587-600
  • 32 Caltagirone S, Rossi C, Poggi A. Flavonoids apigenin and quercetin inhibit melanoma growth and metastatic potential.  Int J Cancer . 2000;  87 595-600
  • 33 Poggi A, Polentarutti N, Donati M B, de Gaetano G, Garattini S. Blood coagulation changes in mice bearing Lewis lung carcinoma, a metastasizing tumor.  Cancer Res . 1977;  37 272-277
  • 34 Morita S, Gebska M A, Kakkar A K, Scully M F. High affinity binding of heparin by necrotic tumour cells neutralises anticoagulant activity. Implications for cancer related thromboembolism and heparin therapy.  Thromb Haemost . 2001;  86 616-622
  • 35 Gorelik E, Berr W E, Huberman R B. Role of the NK cells in the antimetastatic effect of anticoagulant drugs.  Int J Cancer . 1984;  33 87-94
  • 36 Nelson R M, Cecconi O, Roberts W G. Heparin oligosaccharides bind L- and P-selectin and inhibit acute inflammation.  Blood . 1993;  82 3253-3258
  • 37 Varki N M, Varki A. Heparin inhibition of selectin-mediated interactions during the hematogenous phase of carcinoma metastasis: rationale for clinical studies in humans.  Semin Thromb Hemost . 2002;  28 53-66
  • 38 Parish C R, Freeman C, Brown K J, Francis D J, Cowden W B. Identification of sulfated oligosaccharide-based inhibitors of tumor growth and metastasis using novel in vitro assays for angiogenesis and heparanase activity.  Cancer Res . 1999;  59 3433-3441
  • 39 Smorenburg S M, Van Noorden J C. The complex effects of heparins on cancer progression and metastasis in experimental studies.  Pharmacol Rev . 2001;  53 93-106
    >