Int J Sports Med 2002; 23(7): 471-476
DOI: 10.1055/s-2002-35076
Physiology & Biochemistry

© Georg Thieme Verlag Stuttgart · New York

Identical Twins are Discordant for Markers of Eccentric Exercise-Induced Muscle Damage

J.  P.  Gulbin1 , P.  T.  Gaffney2
  • 1Australian Institute of Sport, Bruce, Australia
  • 2School of Health Sciences, Griffith University, Gold Coast, Australia
Further Information

Publication History

Publication Date:
28 October 2002 (online)

Abstract

This study investigated whether the variability observed in the markers of exercise-induced muscle damage (EIMD) has a genetic etiology. Sixteen pairs of identical twins performed 24 maximal eccentric contractions (24MAX) using the elbow flexors. EIMD indicators were measured pre-24MAX and three days post-24MAX and included: post-exercise force deficit, maximal isometric force (ISO), plasma creatine kinase (CK), myoglobin (Mb), and joint range of motion. Force-time curves were recorded throughout the 24MAX. Twin siblings were alike for pre-exercise ISO (intraclass R = 0.89) and CK (R = 0.76) (p < 0.001), but were discordant for post-exercise force deficit (R = 0.29), CK (R = 0.15), and Mb (R = 0.17) (p > 0.05). In comparison with individuals minimally affected by the 24MAX, those who experienced the greatest force deficit 3 days post-exercise (> 50 %) were characterised by the greater application of eccentric force at longer muscle lengths (23.1 % vs 17.3 %) (p < 0.05). This study demonstrates that twins do not experience the same level of EIMD following identical exercise bouts. This suggests that the individual variability following high-force eccentric exercise cannot be attributed to genetic differences, refuting the idea that an inherited subclinical predisposition is responsible. From these results, a potential mechanism for the repeated bout effect is discussed.

References

  • 1 Aizawa H, Morita K, Sasaki N, Tobise K. Exertional rhabdomyolysis as a result of strenuous military training.  J Neurol Sci. 1995;  132 239-240
  • 2 Bar D PR, Rodenburg A JB, Koot R W, Amelink H GJ. Exercise-induced muscle damage: recent developments.  Basic Appl Myol. 1994;  4 5-16
  • 3 Best T M, McCabe R P, Corr D, Vandersby R. Evaluation of a new method to create a standardized muscle stretch injury.  Med Sci Sports Exerc. 1998;  30 200-205
  • 4 Bouchard C, Malina R M, Perusse L. Genetics of Fitness and Physical Performance. Champaign, Illinois; Human Kinetics 1997: 231
  • 5 Bouchard C, Simoneau J A, Lortie G, Boulay M R, Marcotte M, Thibault M C. Genetic effects in human skeletal muscle fiber type distribution and enzyme activities.  Can J Physiol Pharmacol. 1986;  64 1245-1251
  • 6 Chesley A, MacDougall J D, Tarnopolsky M A, Atkinson S A, Smith K. Changes in human muscle protein synthesis after resistance exercise.  J Appl Physiol. 1992;  73 1383-1388
  • 7 Child R B, Saxton J M, Donnelly A E. Comparison of eccentric knee extensor muscle actions at two muscle lengths on indices of damage and angle-specific force production in humans.  J Sports Sci. 1998;  16 301-308
  • 8 Clarkson P M, Ebbeling C B. Investigation of serum creatine kinase variability after muscle damaging exercise.  Clin Sci. 1988;  75 257-261
  • 9 Clarkson P M, Nosaka K, Braun B. Muscle function after exercise-induced muscle damage and rapid adaptation.  Med Sci Sports Exerc. 1992;  24 512-520
  • 10 Evans G F, Haller R G, Wyrick P S, Parkey R W, Fleckenstein J L. Submaximal delayed-onset muscle soreness: correlations between MR imaging findings and clinical measures.  Radiology. 1998;  208 815-820
  • 11 Friden J, Leiber R L. Structural and mechanical basis of exercise-induced muscle injury.  Med Sci Sports Exerc. 1992;  24 521-530
  • 12 Galassi G, Rowland L P, Hays A P, Hopkins L C, DiMauro S. High serum levels of creatine kinase: asymptomatic prelude to distal myopathy.  Musc Nerve. 1987;  10 346-350
  • 13 Hikida R S, Staron R S, Hagerman F C, Sherman W M, Costill D L. Muscle fiber necrosis associated with human marathon runners.  J Neurol Sci. 1983;  59 185-203
  • 14 Jones B, Klissouras V. Genetic variation in the strength-velocity relation of human muscle. In: Malina R, Bouchard C (eds) Sport and Human Genetics. Champaign, IL; Human Kinetics 1986: 155-163
  • 15 Jones D A, Newham D J, Torgan C. Mechanical influences on long-lasting human muscle fatigue and delayed onset pain.  J Physiol (Lond). 1989;  412 415-427
  • 16 Kuklo T R, Tis J E, Moores L K, Schaefer R A. Fatal rhabdomyolysis with bilateral gluteal, thigh, and leg compartment syndrome after the army physical fitness test.  Am J Sports Med. 2000;  28 112-116
  • 17 Lapier T K, Burton H W, Almon R, Cerny F. Alterations in intramuscular connective tissue after limb casting affect contraction-induced muscle injury.  J Appl Physiol. 1995;  78 1065-1069
  • 18 Mair J, Mayr M, Muller E, Koller A, Haid C, Artner-Dworzak E, Calzolari C, Larue C, Puschendorf P. Rapid adaptation to eccentric exercise-induced muscle damage.  Int J Sports Med. 1995;  16 352-356
  • 19 Manfredi T G, Fielding R A, O'Reilly K P, Meredith C N, Yong Lee H, Evans W J. Plasma creatine kinase activity and exercise-induced muscle damage in older men.  Med Sci Sports Exerc. 1991;  23 1028-1034
  • 20 Meltzer H Y, Dorus E, Grunhaus L, Davis J M, Belmaker R. Genetic control of human plasma creatine phosphokinase activity.  Clin Genet. 1978;  13 321-326
  • 21 Morgan D L. New insights into the behaviour of muscle during active lengthening.  Biophys J. 1990;  57 209-221
  • 22 Morrone A, Zammarchi E, Scacheri P C, Donati M A, Hoop R C, Servidei S, Galluzzi G, Hoffmann E P. Asymptomatic dystrophinopathy.  Am J Med Genet. 1997;  69 261-267
  • 23 Newham D J, Jones D A, Edwards R HT. Large delayed plasma creatine kinase changes after stepping exercise.  Muscle Nerve. 1983;  6 380-385
  • 24 Newham D J, Jones D A, Ghosh G, Aurora P. Muscle fatigue and pain after eccentric contractions at long and short length.  Clin Sci. 1988;  74 553-557
  • 25 Noakes T D. Effect of exercise on serum enzyme activities in humans.  Sports Med. 1987;  4 245-267
  • 26 Nosaka K, Clarkson P M. Relationship between post-exercise CK elevation and muscle mass involved in the exercise.  Int J Sports Med. 1992;  13 471-475
  • 27 Nosaka K, Clarkson P M. Muscle damage following repeated bouts of high force eccentric exercise.  Med Sci Sports Exerc. 1995;  27 1263-1269
  • 28 Nosaka K, Clarkson P M. Variability in serum creatine kinase response after eccentric exercise of the elbow flexors.  Int J Sports Med. 1996;  17 120-127
  • 29 Nosaka K, Clarkson P M, McGuiggin M E, Byrne J M. Time course of muscle adaptation after high force eccentric exercise.  Eur J Appl Physiol. 1991;  63 70-76
  • 30 Perlmutter G S, Bies C, Fagan T, Lowenthal D T. The kinetics of serum enzymes following maximal exercise stress testing in healthy men.  Ann Sports Med. 1987;  3 178-181
  • 31 Rapaport D, Colletto G M, Zatz M. Genetic and environmental components of serum creatine kinase (CK) and pyruvate kinase (PK) in normal twins: Implication for genetic risks estimates in duchenne muscular dystrophy carriers.  Am J Med Genet. 1988;  31 291-298
  • 32 Rodenburg J B, Bar P R, de Boer R W. Relations between muscle soreness and biochemical and functional outcomes of eccentric exercise.  J Appl Physiol. 1993;  74 2976-2983
  • 33 Ronikier A, Sklad M, Tyszkiewicz M. Effects of hereditary and environmental factors on creatine kinase activity in twins.  Biol Sport. 1992;  9 33-36
  • 34 Roth S M, Martel G F, Rogers M A. Muscle fiber hypercontraction: a brief review.  Eur J Appl Physiol. 2000;  83 239-245
  • 35 Sayers S P, Clarkson P M, Rouzier P A, Kamen G. Adverse events associated with eccentric exercise protocols: six case studies.  Med Sci Sports Exerc. 1999;  31 1697-1702
  • 36 Sayers S P, Clarkson P M, Lee J. Activity and immobilization after eccentric exercise: II. serum CK.  Med Sci Sports Exerc. 2000;  32 1593-1597
  • 37 Spitler D L, Alexander W C, Hoffler G W, Doerr D F, Buchanan P. Haptoglobin and serum enzymatic response to maximal exercise in relation to physical fitness.  Med Sci Sports Exerc. 1984;  16 366-370
  • 38 Talbot J A, Morgan D L. The effects of stretch parameters on eccentric exercise-induced muscle damage to toad skeletal muscle.  J Muscle Res Cell Motil. 1998;  19 237-245
  • 39 Thomis M A, van Leemputte M, Maes H H, Blimkie C JR, Claessens A L, Marchal G, Willems E, Vlietnick R F, Beunen G P. Multivariate genetic analysis of maximal isometric muscle force at different elbow angles.  J Appl Physiol. 1997;  82 959-967
  • 40 Tietjen D P. Exertional rhabdomyolysis and acute renal failure following the army physical fitness test.  Mil Med. 1989;  154 23-25
  • 41 van der Meulen J H, Kuipers H, Drukker J. Relationship between exercise-induced muscle damage and enzyme release in rats.  J Appl Physiol. 1991;  71 999-1004
  • 42 Warren G L, Hayes D A, Lowe D A, Armstrong R B. Mechanical factors in the initiation of eccentric contraction-induced injury in rat soleus muscle.  J Physiol (Lond). 1993;  464 457-475
  • 43 Warren G L, Lowe D A, Armstrong R B. Measurement tools used in the study of eccentric contraction-induced injury.  Sports Med. 1999;  27 43-59
  • 44 Whitfield J B, Martin N G. Genetic variation and plasma creatine kinase activity.  Acta G enet Med Gemell (Roma). 1986;  35 23-33

Dr. J. Gulbin

Division of Sports Sciences/Sports Medicine · Australian Institute of Sport

PO Box 176 · Belconnen ACT 2616 · Australia ·

Phone: (+61) 2 6214 1619

Fax: (+61) 2 6214 1603

Email: gulbinj@ausport.gov.au

    >