Plant Biol (Stuttg) 2002; 4(5): 603-611
DOI: 10.1055/s-2002-35429
Original Paper
Georg Thieme Verlag Stuttgart ·New York

Water Transport in Impaired Leaf Vein Systems

K. Hüve 1, 2 , R. Remus 2 , D. Lüttschwager 2 , W. Merbach 1
  • 1 Institut für Bodenkunde und Pflanzenernährung der Martin-Luther-Univ. Halle Wittenberg, Halle (Saale), Germany
  • 2 Institut für Primärproduktion und Mikrobielle Ökologie, Zentrum für Agrarlandschafts- und Landnutzungsforschung, Müncheberg, Germany
Further Information

Publication History

Received: April 4, 2002

Accepted: August 22, 2002

Publication Date:
15 November 2002 (online)

Abstract

The subject of our investigation was the water regime of broad bean leaves (Vicia faba L.), especially after having mechanically severed parts of the leaf blade and the leaf venation. Under moderate conditions, 18 - 22 °C temperature and 50 - 70 % relative humidity, the leaves remained viable even after extensive damage. Only if more than 90 % of the xylem cross sectional area of a leaf was severed, the leaf wilted. Lesser damage to the xylem cross-sectional area only resulted in a reduced rate of transpiration and assimilation, compared to intact leaves. The cuts in larger veins were bypassed into small or even very small veins, as shown by xylem transport of dyes. In intact leaves, small veins have a negligible task in long-distance transport. Here, however, transport velocity in small veins was severalfold increased compared to the measurement of transport velocity in veins of the same size in intact leaves. Thereby, water transport to leaf areas distal from the cut was ensured.

References

  • 01 Altus,  D. P., and Canny,  M. J.. (1985);  Water pathways in wheat leaves. I. The division of fluxes between different vein types.  Aust. J. Plant Physiol.. 12 (2) 173-181
  • 02 Bull,  T. A.,, Gayler,  K. R.,, and Glasziou,  K. T.. (1972);  Lateral movement of water and sugar across xylem in sugarcane stalks.  Plant Physiol.. 49 1007-1013
  • 03 Dimond,  A. E.. (1966);  Pressure and flow relations in vascular bundles of the tomato plant.  Plant Physiol.. 41 119-131
  • 04 Ehlers,  W.,, Müller,  U.,, and Grimme,  K.. (1986);  Untersuchungen zum Wasserhaushalt der Ackerbohne. II. Wasserpotential, stomatäre Leitfähigkeit und Ertragsbildung.  Kali-Briefe (Büntehof). 18 (3) 189-210
  • 05 Ellerby,  D. J., and Ennos,  A. R.. (1998);  Resistance to fluid flow of modell xylem vessels with simple scalariform perforation plates.  J. Exp. Bot.. 49 (323) 979-985
  • 06 Ewers,  F. W.,, Fisher,  J. B.,, and Chiu,  S. T.. (1989);  Water transport in the liana Bauhinia fassoglensis (Fabaceae).  Plant Physiol.. 91 1625-1631
  • 07 Freye,  E.. (1981) Photosyntheseleistung und Assimilatverteilung bei Ackerbohnen als Grundlage zur Erklärung von Samenertragsschwankungen. Landw. Fak. M.-Luther-Univ. Halle; Diss.
  • 08 Giordano,  R.,, Salleo,  A.,, Salleo,  S.,, and Wanderlingh,  F.. (1978);  Flow in xylem vessels and Poisseuilles's law.  Can. J. Bot.. 56 (3) 333-338
  • 09 Hacke,  U., and Sauter,  J. J.. (1995);  Vulnerability of xylem to embolism in relation to leaf water potential and stomatal conductance in Fagus sylvatica, F. purpurea and Populus balsamifera. .  J. Exp. Bot.. 46 1177-1183
  • 10 Kikuta,  S. B.,, Lo Gullo,  M. A.,, Nardini,  A.,, Richter,  H.,, and Salleo,  S.. (1997);  Ultrasound acoustic emissions from dehydrating leaves of deciduous and evergreen trees.  Plant Cell Environm.. 20 1381-1390
  • 11 Linton,  M. J.,, Sperry,  J. S.,, and Williams,  D. G.. (1998);  Limits to water transport in Juniperus osteosperma and Pinus edulis: implications for drought tolerance and regulation of transpiration.  Funct. Ecol.. 12 (6) 906-911
  • 12 MacKay,  J. F. G., and Weatherley,  P. E.. (1973);  The effect of transverse cuts through the stems of transpiring woody plants on water transport and stress in the leaves.  J. Exp. Bot.. 78 15-28
  • 13 Martre,  P.,, Durand,  J.-L.,, and Cochard,  H.. (2000);  Changes in axial hydraulic conductivity along elongating leaf blades in relation to xylem maturation in tall fescue.  New Phytol.. 146 235-247
  • 14 Merbach,  W.,, Schumann,  F.,, Römer,  W.,, and Reining,  E.. (1994);  Apparent CO2 assimilation, 14C incorporation, and 14C translocation in spring barley influenced by sink manipulations.  Photosynthetica. 30 (4) 593-601
  • 15 Mühling,  K. H., and Sattelmacher,  B.. (1995);  Apoplastic ion concentration of intact leaves of field bean (Vicia faba) as influenced by ammonium and nitrate nutrition.  J. Plant Physiol.. 147 81-86
  • 16 Nardini,  A.,, Tyree,  M. T.,, and Salleo,  S.. (2001);  Xylem cavitation in the leaf of Prunus laurocerasus and its impact on leaf hydraulics.  Plant Physiol.. 125 (4) 1700-1709
  • 17 Neal,  J.-J.. (1993);  Xylem transport interruption by Anasa tristis feeding causes Cucurbita pepo to wilt.  Entomol. Exp. Appl.. 69 (2) 195-200
  • 18 Neufeld,  H. S.,, Grantz,  D. A.,, Meinzer,  F. C.,, Goldstein,  G.,, Crisosto,  G. M.,, and Crisosto,  C.. (1992);  Genotypic variability in vulnerability of leaf xylem to cavitation in water stressed and well-irrigated sugar-cane.  Plant Physiol.. 100 1020-1028
  • 19 Oosterhuis,  D. M., and Wullschleger,  S. D.. (1987);  Water flow through cotton roots in relation to xylem anatomy.  J. Exp. Bot.. 38 1866-1874
  • 20 Osmond,  C. B.,, Kramer,  D.,, and Lüttge,  U.. (1999);  Reversible, water stress-induced non-uniform chlorophyll fluorescence quenching in wilting leaves of Potentilla reptans may not be due to patchy stomatal responses.  Plant Biology. 1 618-624
  • 21 Plymale,  E. L., and Wylie,  R. B.. (1944);  The major veins of mesomorphic leaves.  Am. J. Bot.. 31 99-106
  • 22 Raschke,  K.. (1970);  Stomatal response to pressure changes and interruptions in the water supply of detached leaves of Zea mays. .  Plant Physiol.. 45 415-423
  • 23 Schultz,  H. R., and Matthews,  M. A.. (1993);  Xylem development and hydraulic conductance in sun and shade shoots of grapevine (Vitis vinifera L.): evidence that low light uncouples water transport capacity from leaf area.  Planta. 190 (3) 393-406
  • 24 Sperry,  J. S.,, Alder,  N. N.,, and Eastlack,  S. E.. (1993);  The effect of reduced hydraulic conductance on stomatal conductance and xylem cavitation.  J. Exp. Bot.. 44 1075-1082
  • 25 Sperry,  J. S.. (1995) Limitations on stem water transport and their consequences. Plant Stems. Gartner, B. L., ed. San Diego; Academic Press pp. 105-124
  • 26 Steudle,  E.. (1992) The biophysics of water: Compartmentation, coupling with metabolic processes, and flow of water in plant roots. Water and life: Comparative analysis of water relationships at the organismic, cellular, and molecular level. Somero, G. N., Osmond, C. B., and Bolis, C. L., eds. Berlin; Springer-Verlag pp. 173-204
  • 27 Teskey,  R. O.,, Hinkley,  T. M.,, and Grier,  C. C.. (1983);  Effect of interruption of flow path on stomatal conduction of Abies amabilis. .  J. Exp. Bot.. 34 1251-1259
  • 28 Tyree,  M. T., and Zimmermann,  M. H.. (1971);  Theory and practice of measuring transport coefficients and sap flow in the xylem of Red Maple stems (Acer rubrum). .  J. Exp. Bot.. 22 1-18
  • 29 Tyree,  M. T.,, Alexander,  J.,, and Machado,  J.-L.. (1992);  Loss of hydraulic conductivity due to water stress in intact juveniles of Quercus rubra and Populus deltoides. .  Tree Physiology. 10 411-415
  • 30 Wistuba,  N.,, Reich,  R.,, Wagner,  H.-J.,, Zhu,  J. J.,, Schneider,  H.,, Bentrup,  F.-W.,, Haase,  A.,, and Zimmermann,  U.. (2000);  Xylem flow and its driving forces in a tropical liana: Concomitant flow-sensitive NMR imaging and pressure probe measurements.  Plant Biol.. 6 579-582
  • 31 Wylie,  R. B.. (1938);  Concerning the conductive capacity of the minor veins of foliage leaves.  Amer. J. Bot.. 25 567-572

K. Hüve

Institut für Primärproduktion und Mikrobielle Ökologie
Zentrum für Agrarlandschafts- und Landnutzungsforschung

Eberswalder Str. 84
15374 Müncheberg
Germany

Email: khueve@zalf.de

Section Editor: H. Rennenberg

    >