Semin Liver Dis 2003; 23(1): 005-020
DOI: 10.1055/s-2003-37587
Copyright © 2002 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA. Tel.: +1(212) 584-4662

The Hepatitis B Virus and Common Mutants

Stephen Locarnini1 , Janine McMillan2 , Angeline Bartholomeusz2
  • 1Professor, Victorian Infectious Diseases Reference Laboratory
  • 2Victorian Infectious Diseases Reference Laboratory, North Melbourne, Victoria, Australia
Further Information

Publication History

Publication Date:
03 March 2003 (online)

ABSTRACT

Most biological systems have developed complex mechanisms to maintain the stability of their genetic information. Exceptions to this include viruses that can undergo rapid and substantial genetic sequence changes and alterations. The hepatitis B virus (HBV) has evolved a unique life cycle resulting in the production of enormous viral loads during active replication without actually directly killing the infected cell. Because the virus uses reverse transcription to copy its DNA genome, mutant viral genomes are frequently found. Particular selection pressures, both endogenous (host immune clearance) and exogenous (vaccines and antivirals), readily select out these escape mutants. It is still not known which particular viral mutations or combination of mutations directly affects the clinical presentation of the liver disease, the nature of the viral persistence, or the course and outcome of chronic infection. Further studies are needed to identify the pathogenic basis for the selection of these mutants. Such research should help improve the basic understanding of this unique virus-host relationship and provide new strategies for complete control of HBV infections.

REFERENCES

  • 1 Chisari F, Ferrari C. Hepatitis B virus immunopathogenesis.  Annu Rev Immunol . 1995;  13 29-60
  • 2 Ganem D, Schneider R. Hepadnaviridae: the viruses and their replication. In: Knipe DM, Howley PM, eds. Fields Virology Philadelphia: Lippincott-Raven 2001: 2923-2970
  • 3 Kann M, Gerlich W. Hepadnaviridae: structure and molecular virology. In: Zuckerman A, Thomas H, eds. Viral Hepatitis London: Churchill Livingstone 1998: 77-105
  • 4 Stuyver L, De Gendt S, Van Geyt C. A new genotype of hepatitis B virus: complete genome and phylogenetic relatedness.  J Gen Virol . 2000;  81 67-74
  • 5 Kao J H. Clinical relevance of hepatitis B viral genotypes: a case of déjà vu?.  J Gastroenterol Hepatol . 2002;  17 113-115
  • 6 Funk M L, Rosenberg D M, Lok A S. World-wide epidemiology of HBeAg-negative chronic hepatitis B and associated precore and core promoter variants.  J Viral Hepat . 2002;  9 52-61
  • 7 Kao J H. Hepatitis B viral genotypes: clinical relevance and molecular characteristics.  J Gastroenterol Hepatol . 2002;  17 643-650
  • 8 Kao J H, Liu C J, Chen D S. Hepatitis B viral genotypes and lamivudine resistance.  J Hepatol . 2002;  36 303-304
  • 9 Sugauchi F, Orito E, Ichida T. Hepatitis B virus of genotype B with or without recombination with genotype C over the precore region plus the core gene.  J Virol . 2002;  76 5985-5992
  • 10 Owiredu W K, Kramvis A, Kew M C. Hepatitis B virus DNA in serum of healthy black African adults positive for hepatitis B surface antibody alone: possible association with recombination between genotypes A and D.  J Med Virol . 2001;  64 441-454
  • 11 Warren K S, Heeney J L, Swan R A, Heriyanto, Verschoor E J. A new group of hepadnaviruses naturally infecting orangutans (Pongo pygmaeus).  J Virol . 1999;  73 7860-7865
  • 12 Macdonald D, Holmes E, Lewis C, Simmonds P. Detection of hepatitis B virus infection in wild-born chimpanzees (Pan troglodytes verus): phylogenetic relationships with human and other primate genotypes.  J Virol . 2000;  74 4253-4257
  • 13 Will H, Reiser W, Weimer T. Replication strategy of human hepatitis B virus.  J Virol . 1987;  61 904-911
  • 14 Carman W F, Zanetti A R, Karayiannis P. Vaccine-induced escape mutant of hepatitis B virus.  Lancet . 1990;  336 325-329
  • 15 Okamoto H, Tsuda F, Sakugawa H. Typing hepatitis B virus by homology in nucleotide sequence: comparison of surface antigen subtypes.  J Gen Virol . 1988;  69 2575-2583
  • 16 Milich D R, Thornton G B, Neurath A R. Enhanced immunogenicity of the pre-S region of hepatitis B surface antigen.  Science . 1985;  228 1195-1199
  • 17 Tron F, Degos F, Brechot C. Randomized dose range study of a recombinant hepatitis B vaccine produced in mammalian cells and containing the S and PreS2 sequences.  J Infect Dis . 1989;  160 199-204
  • 18 Bruss V, Hagelstein J, Gerhardt E, Galle P R. Myristylation of the large surface protein is required for hepatitis B virus in vitro infectivity.  Virology . 1996;  218 396-399
  • 19 Milich D R, McLachlan A, Chisari F V, Kent S B, Thorton G B. Immune response to the pre-S(1) region of the hepatitis B surface antigen (HBsAg): a pre-S(1)-specific T cell response can bypass nonresponsiveness to the pre-S(2) and S regions of HBsAg.  J Immunol . 1986;  137 315-322
  • 20 Chen H S, Kew M C, Hornbuckle W E. The precore gene of the woodchuck hepatitis virus genome is not essential for viral replication in the natural host.  J Virol . 1992;  66 5682-5684
  • 21 Hadziyannis S J, Vassilopoulos D. Hepatitis B e antigen- negative chronic hepatitis B.  Hepatology . 2001;  34 617-624
  • 22 Milich D R, Jones J E, Hughes J L. Is a function of the secreted hepatitis B e antigen to induce immunologic tolerance in utero?.  Proc Natl Acad Sci U S A . 1990;  87 6599-6603
  • 23 Milich D R, McLachlan A, Moriarty A, Thornton G B. Immune response to hepatitis B virus core antigen (HBcAg): localization of T cell recognition sites within HBcAg/HBeAg.  J Immunol . 1987;  139 1223-1231
  • 24 Zoulim F, Seeger C. Reverse transcription in hepatitis B viruses is primed by a tyrosine residue of the polymerase.  J Virol . 1994;  68 6-13
  • 25 Schlicht H J, Bartenschlager R, Schaller H. Biosynthesis and enzymatic functions of the hepadnaviral reverse transcriptase In: McLachlan A, ed. Molecular Biology of the Hepatitis B Viruses.  Boca Raton, FL: CRC Press 1991: 171-180
  • 26 Rehermann B, Fowler P, Sidney J. The cytotoxic T lymphocyte response to multiple hepatitis B virus polymerase epitopes during and after acute viral hepatitis.  J Exp Med . 1995;  181 1047-1058
  • 27 Zoulim F, Saputelli J, Seeger C. Woodchuck hepatitis virus X protein is required for viral infection in vivo.  J Virol . 1994;  68 2026-2030
  • 28 Koik K. Hepatitis B virus HBx gene and hepatocarcinogenesis.  Intervirology . 1995;  38 134-142
  • 29 Rossne M T. Review: hepatitis B virus X-gene product: a promiscuous transcriptional activator.  J Med Virol . 1992;  36 101-117
  • 30 Wang X W, Forrester K, Yeh H. Hepatitis B virus X protein inhibits p53 sequence-specific DNA binding, transcriptional activity, and association with transcription factor ERCC3.  Proc Natl Acad Sci U S A . 1994;  91 2230-2234
  • 31 Truant R, Antunovic J, Greenblatt J, Prives C, Cromlish J A. Direct interaction of the hepatitis B virus HBx protein with p53 leads to inhibition by HBx of p53 response element-directed transactivation.  J Virol . 1995;  69 1851-1859
  • 32 Wang X W, Gibson M K, Vermeulen W. Abrogation of p53-induced apoptosis by the hepatitis B virus X gene.  Cancer Res . 1995;  55 6012-6016
  • 33 Huang J, Kwong J, Sun E-Y, Liang T. Proteasome complex as a potential cellular target of hepatitis H virus X protein.  J Virol . 1996;  70 5582-5591
  • 34 Hu Z, Zhang Z, Doo E. Hepatitis B virus X protein is both a substrate and a potential inhibitor of the proteasome complex.  J Virol . 1999;  73 7231-7240
  • 35 Tur-Kaspa R, Shaul Y, Moore D D. The glucocorticoid receptor recognizes a specific nucleotide sequence in hepatitis B virus DNA causing increased activity of the HBV enhancer.  Virology . 1988;  167 630-633
  • 36 Freed E, Martin M. HIVs and their replication. In: Fields BNKD, Howley PM, Griffin BE, et al, eds. Fields Virology Philadelphia: Lippincott Williams & Wilkins 2001: 1971-2041
  • 37 Summers J, Mason W S. Replication of the genome of a hepatitis B-like virus by reverse transcription of an RNA intermediate.  Cell . 1982;  29 403-415
  • 38 Nassal M. Hepatitis B virus replication: novel roles for virus-host interactions.  Intervirology . 1999;  42 100-116
  • 39 Seeger C, Mason W. Replication of the hepatitis virus genome. In: DePamphilis M, ed. DNA Replication in Eukaryotic Cells Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press 1996: 815-831
  • 40 Delaney IV E W, Locarnini S, Shaw T. Resistance of hepatitis B virus to antiviral drugs: current aspects and directions for future investigation.  Antivir Chem Chemother . 2001;  12 1-35
  • 41 Neurath A R, Kent S B, Strick N, Parker K. Identification and chemical synthesis of a host cell receptor binding site on hepatitis B virus.  Cell . 1986;  46 429-436
  • 42 De Meyer S, Gong Z, Suwandhi W. Organ and species specificity of hepatitis B virus (HBV) infection: a review of literature with a special reference to preferential attachment of HBV to human hepatocytes.  J Viral Hepat . 1997;  4 145-153
  • 43 Hild M, Weber O, Schaller H. Glucagon treatment interferes with an early step of duck hepatitis B virus infection.  J Virol . 1998;  72 2600-2606
  • 44 Bock C T, Schranz P, Schroder C H, Zentgraf H. Hepatitis B virus genome is organized into nucleosomes in the nucleus of the infected cell.  Virus Genes . 1994;  8 215-229
  • 45 Newbold J E, Xin H, Tencza M. The covalently closed duplex form of the hepadnavirus genome exists in situ as a heterogeneous population of viral minichromosomes.  J Virol . 1995;  69 3350-3357
  • 46 Park S G, Jung G. Human hepatitis B virus polymerase interacts with the molecular chaperonin Hsp60.  J Virol . 2001;  75 6962-6968
  • 47 Lott L, Beames B, Notvall L, Lanford R E. Interaction between hepatitis B virus core protein and reverse transcriptase.  J Virol . 2000;  74 11479-11489
  • 48 von Weizsacker F, Kock J, Weiland S. Cis-preferential recruitment of duck hepatitis B virus core protein to the RNA/polymerase preassembly complex.  Hepatology . 2002;  35 209-216
  • 49 Staprans S, Loeb D D, Ganem D. Mutations affecting hepadnavirus plus-strand DNA synthesis dissociate primer cleavage from translocation and reveal the origin of linear viral DNA.  J Virol . 1991;  65 1255-1262
  • 50 Yang W, Mason W S, Summers J. Covalently closed circular viral DNA formed from two types of linear DNA in woodchuck hepatitis virus-infected liver.  J Virol . 1996;  70 4567-4575
  • 51 Gerelsaikhan T, Tavis J E, Bruss V. Hepatitis B virus nucleocapsid envelopment does not occur without genomic DNA synthesis.  J Virol . 1996;  70 4269-4274
  • 52 Wei Y, Tavis J E, Ganem D. Relationship between viral DNA synthesis and virion envelopment in hepatitis B viruses.  J Virol . 1996;  70 6455-6458
  • 53 Bruss V, Thomssen R. Mapping a region of the large envelope protein required for hepatitis B virion maturation.  J Virol . 1994;  68 1643-1650
  • 54 Tuttleman J S, Pourcel C, Summers J. Formation of the pool of covalently closed circular viral DNA in hepadnavirus-infected cells.  Cell . 1986;  47 451-460
  • 55 Okamoto H, Imai M, Kametani M, Nakamura T, Mayumi M. Genomic heterogeneity of hepatitis B virus in a 54-year-old woman who contracted the infection through materno-fetal transmission.  Jpn J Exp Med . 1987;  57 231-236
  • 56 Gunther S, Fischer L, Pult I, Sterneck M, Will H. Naturally occurring variants of hepatitis B virus.  Adv Virus Res . 1999;  52 25-137
  • 57 Zhang Y Y, Summers J. Enrichment of a precore-minus mutant of duck hepatitis B virus in experimental mixed infections.  J Virol . 1999;  73 3616-3622
  • 58 Zhang Y Y, Summers J. Low dynamic state of viral competition in a chronic avian hepadnavirus infection.  J Virol . 2000;  74 5257-5265
  • 59 Doo E, Liang J T. Molecular anatomy and pathophysiologic implications of drug resistance in hepatitis B virus infection.  Gastroenterology . 2001;  120 1000-1008
  • 60 Seeger C, Mason W S. Hepatitis B virus biology.  Microbiol Mol Biol Rev . 2000;  64 51-68
  • 61 Lok A S, Akarca U, Greene S. Mutations in the pre-core region of hepatitis B virus serve to enhance the stability of the secondary structure of the pre-genome encapsidation signal.  Proc Natl Acad Sci U S A . 1994;  91 4077-4081
  • 62 Liang T J, Hasegawa K, Rimon N, Wands J R, Ben-Porath E. A hepatitis B virus mutant associated with an epidemic of fulminant hepatitis.  N Engl J Med . 1991;  324 1705-1709
  • 63 Omata M, Ehata T, Yokosuka O, Hosoda K, Ohto M. Mutations in the precore region of hepatitis B virus DNA in patients with fulminant and severe hepatitis.  N Engl J Med . 1991;  324 1699-1704
  • 64 Okamoto H, Yotsumoto S, Akahane Y. Hepatitis B viruses with precore region defects prevail in persistently infected hosts along with seroconversion to the antibody against e antigen.  J Virol . 1990;  64 1298-1303
  • 65 Hunt C M, McGill J M, Allen M I, Condreay L D. Clinical relevance of hepatitis B viral mutations.  Hepatology . 2000;  31 1037-1044
  • 66 Akarca U S, Lok A S. Naturally occurring hepatitis B virus core gene mutations.  Hepatology . 1995;  22 50-60
  • 67 Sirma H, Giannini C, Poussin K. Hepatitis B virus X mutants, present in hepatocellular carcinoma tissue abrogate both the antiproliferative and transactivation effects of HBx.  Oncogene . 1999;  18 4848-4859
  • 68 Carman W F, Trautwein C, van Deursen J F. Hepatitis B virus envelope variation after transplantation with and without hepatitis B immune globulin prophylaxis.  Hepatology . 1996;  24 489-493
  • 69 Stuyver L J, Locarnini S A, Lok A. Nomenclature for antiviral-resistant human hepatitis B virus mutations in the polymerase region.  Hepatology . 2001;  33 751-757
  • 70 Melegari M, Scaglioni P, Wands J. Hepatitis B virus mutants associated with 3TC and famciclovir administration are replication defective.  Hepatology . 1998;  27 628-633
  • 71 Liaw Y-F, Chien R-N, Yeh C-T, Tsai S-L, Chu C-M. Acute exacerbation and hepatitis B virus clearance after emergence of YMDD motif mutation during lamivudine therapy.  Hepatology . 1999;  30 567-572
  • 72 De Man A R, Bartholomeusz A, Niesters H GM, Zondervan P E, Locarnini S. The sequential occurrence of viral mutations in a liver transplant recipient re-infected with hepatitis B virus: hepatitis B immune globulin escape, famciclovir non-response, followed by lamivudine resistance resulting in graft loss.  J Hepatol . 1998;  29 669-675
  • 73 Locarnini S. Hepatitis B virus surface and polymerase gene variants: potential virological and clinical significance.  Hepatology . 1998;  27 294-297
  • 74 Tillmann H L, Trautwein C, Bock T. Mutational analysis of hepatitis B virus on sequential therapy with famciclovir and lamivudine in patients with hepatitis B virus reinfection occurring under HBIg immunoglobulin after liver transplantation.  Hepatology . 1999;  30 244-256
  • 75 Bock C, Tillmann H, Torresi J. HBV polymerase mutants with enhanced replication selected during lamivudine therapy result in sudden onset of liver failure.  Gastroenterology . 2002;  122 264-273
  • 76 Torresi J, Earnest-Silveira L, Deliyannis G. Reduced antigenicity of the hepatitis B virus HBsAg protein arising as a consequence of sequence changes in the overlapping polymerase gene that are selected by lamivudine therapy.  Virology . 2002;  293 305-313
  • 77 Thibault V, Aubron-Olivier C, Agut H, Katlama C. Primary infection with a lamivudine-resistant hepatitis B virus.  AIDS . 2002;  16 131-133
    >