Horm Metab Res 2003; 35(2): 97-103
DOI: 10.1055/s-2003-39051
Original Clinical
© Georg Thieme Verlag Stuttgart · New York

Post-Exercise Increase of Lipid Oxidation after a Moderate Exercise Bout in Untrained Healthy Obese Men

F.  Marion-Latard 1 , F.  Crampes 1 , A.  Zakaroff-Girard 1 , I.  De Glisezinski 1 , I.  Harant 1 , V.  Stich 2 , C.  Thalamas 3 , D.  Rivière 1 , M.  Lafontan 1 , M.  Berlan 1
  • 1 Institut national de la santé et de la recherche médicale (INSERM Unit 586): Department of the Adaptation to the Exercise and Laboratory of Medical and Clinical Pharmacology, Faculty of Medicine, Toulouse, France
  • 2 Department of Sport Medicine and Obesity Unit, Charles University, Prague 2, Czech Republic
  • 3 Center of Clinical investigation, Purpan Hospital, Toulouse, France
Further Information

Publication History

Received 28 February 2002

Accepted after revision 19 August 2002

Publication Date:
07 May 2003 (online)

Abstract

The aim of the study was to examine whether a moderate exercise increases the utilization of fatty acids during the recovery period in obese men. Six healthy obese participated in a randomized crossover investigation, one with exercise and one without exercise. At 8 a. m., the subjects had a standardized breakfast and they rested in a sitting position for 3 hours. The subjects were maintained in the sitting position for 4 additional hours in one session. In a second session, they exercised for 60 min at 50 % of their V˙O2 max and then returned to the sitting position for 3 hours. Respiratory exchange ratio (RER) values were calculated by indirect calorimetry. During the resting session, plasma non-esterified fatty acids (NEFA) and glycerol concentrations rose progressively, whereas RER progressively decreased. During the exercise, plasma catecholamines, NEFA, glycerol, growth hormone and cortisol levels and RER increased while insulin decreased. During the recovery, plasma NEFA increased and glycerol decreased. During the first hour of recovery, RER values were lower and fatty acid utilization higher than during the same period of the resting session. The study shows that exercise induces modifications in hormonal factors promoting lipid mobilization and suggests that exercise provide substantial amounts of NEFA for muscle oxidation during recovery from an exercise bout in obese subjects.

References

  • 1 Jeukendrup A E, Saris V HM, Wagenmakers A JM. Fat metabolism during exercise: a review. Part I: Fatty acid mobilization and muscle metabolism.  Int J Sports Med. 1998;  19 231-244
  • 2 Divertie G D, Jensen M D, Miles J M. Stimulation of lipolysis in humans by physiological hypercortisolemia.  Diabetes. 1991;  40 1228-1232
  • 3 Moller N, Schmitz O, Porksen N, Moller J, Jorgensen J O. Dose-response studies on the metabolic effects of a growth hormone pulse in humans.  Metabolism. 1992;  41 172-175
  • 4 Coyle E F, Jeukendrup A E, Wagenmakers A JM, Saris W HM. Fatty acid oxidation is directly regulated by carbohydrate metabolism during exercise.  Am J Physiol. 1997;  273 E268-E275
  • 5 Romijn J A, Coyle E F, Sidossis L S, Gastaldelli A, Horowitz J F, Endert E, Wolfe R R. Regulation of endogenous fat and carbohydrate metabolism in relation to exercise intensity.  Am J Physiol. 1993;  265 E380-E391
  • 6 Rasmussen B B, Hancock C R, Winder W W. Postexercise recovery of skeletal muscle molonyl-CoA, acetyl-CoA carboxylase, and AMP-activated protein kinase.  J Appl Physiol. 1998;  85 1629-1634
  • 7 Dean D, Daugaard J R, Young M E, Saha A, Vavvas D, Asp D, Kiens B, Kim K-H, Witters L, Richter E A, Ruderman N. Exercise diminishes the activity of Acetyl-CoA carboxylase in human muscle.  Diabetes. 2000;  49 1295-1300
  • 8 Mulla N AL, Simonsen L, Bülow J. Post-exercise adipose tissue and skeletal muscle lipid metabolism in humans: the effect of exercise intensity.  J Physiol. 2000;  524 919-928
  • 9 Stich V, de Glisezinski I, Berlan M, Bulow J, Galitzky J, Harant I, Suljkovikova H, Lafontan M, Rivière D, Crampes F. Adipose lipolysis is increased during a repeated bout of aerobic exercise.  J Appl Physiol. 2000;  88 1277-1283
  • 10 Wolfe , R R, Klein S, Carraro F, Weber J M. Role of triglyceride-fatty acid cycle in controlling fat metabolism in humans during and after exercise.  Am J Physiol. 1990;  258 E382-E389
  • 11 Ferrannini E. The theoretical basis of indirect calorimetry.  Metabolism. 1988;  37 287-301
  • 12 Bradley D C, Kaslow H R. Radiometric assays for glycerol, glucose and glycogen. Anal.  Biochem.. 1989;  180 11-16
  • 13 Wolfe R, Nadel E R, Shaw J H, Stephenson L A, Wolfe M H. Role of changes in insulin and glucagon in glucose homeostasis in exercise.  J Clin Invest. 1986;  77 900-907
  • 14 Galster A D, Clutter W E, Cryer P E, Collins J A. Epinephrine plasma thresholds for lipolytic effect in man.  J Clin Invest. 1981;  67 1729-1738
  • 15 Stich v, de Glisezinski I, Crampes F, Suljkovicova H, Galitzky J, Riviere D, Hejnova J, Lafontan M, Berlan M. Activation of antilipolytic a2-adrenergic receptors by epinephrine during exercise in human adipose tissue.  Am J Physiol. 1999;  277 R1076-R1083
  • 16 Bizen C A, Swan P D, Manore M M. Postexercise oxygen consumption and substrate use after resistance exercise in women.  Med Sci Sports Exerc. 2001;  33 932-938
  • 17 Trost S, Wilcox A, Gillis D. The effect of substrate utilization, manipulated by nicotinic acid, on excess postexercise oxygen consumption.  Int J Sports Med. 1997;  18 83-88
  • 18 Walker M, Cooper B G, Elliott C, Reed J W, Orskov H, Alberti G MM. Role of plasma non-esterified fatty acids during and after exercise.  Clin Sci. 1991;  81 319-325
  • 19 Ranneries C, Bulow J, Buemann B, Christensen N J, Madsen J, Astrup A. Fat metabolism in formerly obese women.  Am J Physiol. 1998;  274 E155-E161
  • 20 Zurlo F, Lillioja S, Esposito-del P uente, Nyomba B L, Raz I, Saad M F, Swinburn B A, Knowler W C, Bogardus C, Ravussin E. Low ratio of fat to carbohydrate oxidation as predictor of weight gain : study of 24-h RQ.  Am J Physiol. 1990;  259 E650-E657
  • 21 Abu-Elheiga L, Brinkley W R, Zhong L, Chirala S S, Woldegiorgis G, Wakil S J. The subcellular localization of acetyl-CoA carboxylase 2.  PNAS. 2000;  97 1444-1449
  • 22 Abu-Elheiga L, Matzuk M M, Abo-Hashema K AH, Wakil S J. Continuous fatty acid oxidation and reduced fat storage in mice lacking acetyl-CoA carboxylase 2.  Science. 2001;  291 2613-2616
  • 23 Awan M M, Saggerson E D. Malonyl-CoA metabolism in cardiac myocytes and its relevance to the control of fatty acid oxidation.  Biochem J. 1993;  295 61-66
  • 24 Odland L M, Howlett R A, Heigenhauser G JF, Hultman E, Spriet L L. Skeletal muscle malonyl-CoA content at the onset of exercise at varying power outputs in humans.  Am J Physiol. 1998;  274  E1080-E1085
  • 25 Brechtel K, Niess A M, Machann J, Rett K, Schick F, Claussen C D, Dickhuth H H, Haering H U, Jacob S. Untilization of intramyocellular lipids (IMCLs) during exercise as assessed by proton magnetic resonance spectroscopy.  Horm Metab Res. 2001;  33 63-66

Dr. M. Berlan

INSERM U 586 · Laboratoire de Pharmacologie Médicale et Clinique

Faculté de Médecine · 37 Allées Jules Guesde · 31073 Toulouse cedex · France

Phone: +33(5)61145907

Fax: +33(5)612551 16 ·

Email: berlan@cict.fr

    >