Rofo 2004; 176(5): 709-718
DOI: 10.1055/s-2004-813078
Muskuloskeletales System

© Georg Thieme Verlag Stuttgart · New York

Mehrschicht-CT zur Strukturanalyse des trabekulären Knochens - Vergleich mit Mikro-CT und biomechanischer Festigkeit

Multislice-CT for Structure - Analysis of Trabecular Bone - a Comparison with Micro-CT and Biomechanical StrengthJ. S. Bauer1 , A. S. Issever2 , M. Fischbeck3 , A. Burghardt2 , F. Eckstein3 , E. J. Rummeny1 , S. Majumdar2 , T. M. Link1, 2
  • 1Institut für Röntgendiagnostik der Technischen Universität München
  • 2Department of Radiology, UCSF, San Francisco, CA, USA
  • 3Forschungsgruppe Musculoskelettales System, Anatomische Anstalt der Ludwig-Maximilians-Universität, München
Further Information

Publication History

Publication Date:
06 May 2004 (online)

Zusammenfassung

Ziel: Im Vergleich zur Einschicht-Spiral-CT (ES-CT) hat die Mehrschicht-CT (MS-CT) eine deutlich höhere Ortsauflösung. Ziel dieser Studie war es daher zu prüfen, ob der Zugewinn an Auflösung Vorteile für die Knochenstrukturanalyse in der Osteoporosediagnostik bietet. Material und Methoden: 20 zylinderförmige, trabekuläre Knochenproben (Durchmesser 12 mm, Länge 15 - 20 mm) wurden humanen thorakalen Wirbelsäulenpräparaten (BWK 8) entnommen. Mittels ES- und MS-CT wurden hochauflösende Schnittbilder angefertigt und histomorphometrische Strukturparameter errechnet. Zusätzlich wurde die Knochenmineraldichte (BMD) mittels quantitativer CT bestimmt. Als Goldstandard dienten analoge Strukturparameter aus der Mikro-CT und die biomechanisch bestimmte Versagensspannung (VS) der Proben. Ergebnisse: Die Parameter Knochenvolumenfraktion und trabekuläre Separation aus dem ES- und MS-CT korrelierten hoch mit den entsprechenden Strukturparametern aus der Mikro-CT (bis r2 = 0,84; p < 0,01) und mit der VS (bis r2 = 0,81; p < 0,01). Die höchste Korrelation mit der VS ergab sich für den Parameter trabekuläre Anzahl aus dem MS-CT (r2 = 0,85, p < 0,01). Diese war signifikant (p < 0,05) höher als die Korrelation zwischen VS und BMD (r2 = 0,49). Schlussfolgerung: Mit der MS-CT gemessene Strukturparameter des trabekulären Knochens zeigen hohe Korrelationen mit der Mikro-CT, so dass eine klinische Charakterisierung der trabekulären Struktur möglich erscheint. Mittels MS-CT akquirierte Strukturparameter waren in dieser experimentellen Studie für die Vorhersage der biomechanischen Festigkeit am besten geeignet.

Abstract

Objectives: MS-CT (Multislice-Spiral-CT) has a higher spatial resolution compared to the SS-CT (Singleslice-CT). The purpose of this study was to investigate, if the higher spatial resolution of the MS-CT has advantages for structural analyses in the assessment of osteoporosis. Material and Methods: 20 cylindrical trabecular bone specimens (diameter 12 mm, length 15 - 20 mm) were harvested from formalin-fixed human thoracic spines. All specimens were examined by Micro-CT and quantitative, histomorphologic parameters were determined. Analogous structural parameters were calculated from the high-resolution images acquired by both MS- and SS-CT. Additionally, the BMD (bone mineral density) was measured by QCT (quantitative CT). The maximum compressive strength (MCS) was determined in a biomechanical test. The structural parameters were correlated with the histomorphologic parameters and with the MCS. Results: The parameters bone fraction and trabecular separation correlated significantly in both MS- and SS-CT with the analogous parameters from Micro-CT (r2 = 0.84, p < 0.01) and the MCS (r2 = 0.81, p < 0.01). The highest correlation with the MCS was calculated using the trabecular number measured by MS-CT in the superior region near the endplate of the vertebra with the high-resolution kernel U90 u (r2 = 0.85, p < 0.01). This correlation was significantly higher than the correlation between MCS and BMD (r2 = 0.49, p < 0.01). Conclusion: Micro-CT- and MS-CT-determined structural parameters of the trabecular bone showed significant, high correlations. Thus, a characterisation of the trabecular structure seems to be possible. The biomechanical stability of the bone can also be predicted well. The structural parameters acquired by MS-CT show higher correlations with the MCS than the BMD or structural parameters determined by SS-CT do. In this study MS-CT was best suited to predict biomechanical strength of trabecular bone.

Literatur

  • 1 Götte S, Dittmar K. Epidemiologie und Kosten der Osteoporose.  Orthopäde. 2001;  30 (7) 402-404
  • 2 NIH Consensus Development Panel. Osteoporosis prevention, diagnosis, and therapy.  JAMA. 2001;  285 (6) 785-795
  • 3 Ross P, Davis J, Wasnich R. et al . A critical review of bone mass and the risk of fractures in osteoporosis.  Cacif Int Tissue. 1990;  46 149-161
  • 4 Cortet B, Dubois P, Boutry N. et al . Does high-resolution computed tomography image analysis of the distal radius provide information independent of bone mass?.  J Clin Densitom. 2000;  3 (4) 339-351
  • 5 Gordon C L, Lang T F, Augat P. et al . Image-based assessment of spinal trabecular bone structure from high-resolution CT images.  Osteoporos Int. 1998;  8 (4) 317-325
  • 6 Link T M, Majumdar S, Lin J C. et al . Assessment of trabecular structure using high resolution CT images and texture analysis.  J Comput Assist Tomogr. 1998;  22 (l) 15-24
  • 7 Waldt S, Meier N, Renger B. et al . Strukturanalyse hochauflösender Computertomogramme als ergänzendes Verfahren in der Osteoporosediagnostik: In vitro Untersuchungen an Wirbelsäulensegmenten.  Fortschr Röntgenstr. 1999;  171 136-142
  • 8 Engelke K, Karolczak M, Lutz A. et al . Mikro-CT-Technologie und Applikationen zur Erfassung von Knochenarchitektur.  Radiologe. 1999;  39 (3) 203-212
  • 9 Muller R, Hildebrand T, Ruegsegger P. Non-invasive bone biopsy: a new method to analyse and display the three-dimensional structure of trabecular bone.  Phys Med Biol. 1994;  39 (1) 145-164
  • 10 Ruegsegger P, Koller B, Muller R. A microtomographic system for the nondestructive evaluation of bone architecture.  Calcif Tissue Int. 1996;  58 (l) 24-29
  • 11 Parfitt A M, Drezner M K, Glorieux F H. et al . Bone histomorphometry: standardization of nomenclature, symbols, and units. Report of the ASBMR Histomorphometry Nomenclature Committee.  J Bone Miner Res. 1987;  2 (6) 595-610
  • 12 Link T M, Majumdar S, Augat P. et al . In vivo high resolution MRI of the calcaneus: differences in trabecular structure in osteoporosis patients.  J Bone Miner Res. 1998;  13 (7) 1175-1182
  • 13 Issever A S, Vieth V, Letter A. et al . Local differences in the trabecular bone structure of the proximal femur depicted with high-spatial- resolution MR imaging and multisection CT.  Acad Radiol. 2002;  9 (12) 1395-1406
  • 14 Ebbesen E N, Thomsen J S, Beck-Nielsen H. et al . Age- and gender-related differences in vertebral bone mass, density, and strength.  J Bone Miner Res. 1999;  14 (8) 1394-1403
  • 15 Gluer C C, Blake G, Lu Y. et al . Accurate assessment of precision errors: how to measure the reproducibility of bone densitometry techniques.  Osteoporos Int. 1995;  5 (4) 262-270
  • 16 Wedegärtner U, Thurmann H, Schmidt R. et al . Strahlenexposition bei der Mehrschicht-Spiral-CT (MSCT) von Kopf, Mittelgesicht und Beckenskelett: Vergleich mit der Einzeilen-Spiral-CT (SSCT).  Fortschr Rontgenstr. 2003;  175 234-238
  • 17 Kothari M, Keaveny T M, Lin J C. et al . Impact of spatial resolution on the prediction of trabecular architecture parameters.  Bone. 1998;  22 (5) 437-443
  • 18 Link T M, Vieth V, Stehling C. et al . High-resolution MRI vs multislice spiral CT: Which technique depicts the trabecular bone structure best?.  Eur Radiol. 2003;  13 (4) 663-671
  • 19 Majumdar S, Newitt D, Mathur A. et al . Magnetic resonance imaging of trabecular bone structure in the distal radius: Relationship with X-ray tomographic microscopy and biomechanics.  Osteoporos Int. 1996;  6 376-385
  • 20 Cendre E, Mitton D, Roux J P. et al . High-resolution computed tomography for architectural characterization of human lumbar cancellous bone: relationships with histomorphometry and biomechanics.  Osteoporos Int. 1999;  10 (5) 353-360
  • 21 Block J, Smith R, Glüer C C. et al . Models of spinal trabecular bone loss as determined by quantitative computed tomography.  J Bone Miner Res. 1989;  4 249-257
  • 22 Hayes W, Piazza S, Zysset P. Biomechanics of fracture risk prediction of the hip and spine by quantitative computed tomography.  Radiologic Clinics of North America. 1991;  29 1-18
  • 23 Parfitt A. Trabecular bone architecture in the pathogenesis and prevention of fracture.  Am JMed. 1987;  82 68-72
  • 24 Banse X, Devogelaer J P, Munting E. et al . Inhomogeneity of human vertebral cancellous bone: systematic density and structure patterns inside the vertebral body.  Bone. 2001;  28 (5) 563-571
  • 25 Thomsen J S, Ebbesen E N, Mosekilde L. Zone-dependent changes in human vertebral trabecular bone: clinical implications.  Bone. 2002;  30 (5) 664-669
  • 26 van der Meulen M C, Jepsen K J, Mikic B. Understanding bone strength: size isn’t everything.  Bone. 2001;  29 (2) 101-104
  • 27 Satoris D. Osteoporosis. Resnick D Diagnosis of bone and joint disorders Philadelphia; Saunders 1996
  • 28 Mosekilde L, Mosekilde L. Normal vertebral body size and compressive strength: relations to age and to vertebral and iliac trabecular bone compressive strength.  Bone. 1986;  7 (3) 207-212
  • 29 McBroom R J, Hayes W C, Edwards W T. et al . Prediction of vertebral body compressive fracture using quantitative computed tomography.  J Bone Joint Surg Am. 1985;  67 (8) 1206-1214

Prof. Dr. med. Thomas M. Link

Department of Radiology at UCSF

400 Parnassus Ave

Box 0628

San Francisco, CA 94143, USA

Email: tmlink@radiology.ucsf.com

    >