Semin Respir Crit Care Med 2003; 24(6): 629-638
DOI: 10.1055/s-2004-815659
Copyright © 2003 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA. Tel.: +1(212) 584-4662

Genetics of Cystic Fibrosis

Sabina Gallati
  • Division of Human Genetics, Department of Pediatrics/Inselspital, University of Berne, Switzerland
Further Information

Publication History

Publication Date:
15 January 2004 (online)

ABSTRACT

Cystic fibrosis (CF) is caused by mutations in the CF transmembrane conductance regulator (CFTR) gene, which encodes a protein expressed in the apical membrane of exocrine epithelial cells. CFTR functions principally as a cyclic adenosine monophosphate (cAMP)-induced chloride channel and appears capable of regulating other ion channels. Mutations affect CFTR through a variety of molecular mechanisms, which can produce little or no functional gene product at the apical membrane. More than 1000 different disease-causing mutations within the CFTR gene have been described. The potential of a mutation to contribute to the phenotype depends on its type, localization in the gene, and the molecular mechanism as well as on interactions with secondary modifying factors. Genetic testing can confirm a clinical diagnosis of CF and can be used for infants with meconium ileus, for carrier detection in individuals with positive family history and partners of proven CF carriers, and for prenatal diagnostic testing if both parents are carriers. Studies of clinical phenotype in correlation with CFTR genotype have revealed a very complex relationship demonstrating that some phenotypic features are closely determined by the underlying mutations, whereas others are modulated by modifier genes, epigenetic mechanisms, and environment.

REFERENCES

  • 1 Richards C S, Bradley L A, Amos J. et al . Standards and guidelines for CFTR mutation testing.  Genet Med . 2002;  4 379-391
  • 2 Gabriel S E, Brigman K N, Koller B H, Boucher R C, Stutts M J. Cystic fibrosis heterozygote resistance to cholera toxin in the cystic fibrosis mouse model.  Science . 1994;  266(5182) 107-109
  • 3 Pier G B, Grout M, Zaidi T. et al . Salmonella typhi uses CFTR to enter intestinal epithelial cells.  Nature . 1998;  393(6680) 79-82
  • 4 Padua R A, Warren N, Grimshaw D. et al . The cystic fibrosis delta F508 gene mutation and cancer.  Hum Mutat . 1997;  10(1) 45-48
  • 5 Abraham E H, Vos P, Kahn J. et al . Cystic fibrosis hetero- and homozygosity is associated with inhibition of breast cancer growth.  Nat Med . 1996;  2 593-596
  • 6 Riordan J R, Rommens J M, Kerem B. et al . Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA.  Science . 1989;  245(4922) 1066-1073
  • 7 Rommens J M, Iannuzzi M C, Kerem B. et al . Identification of the cystic fibrosis gene: chromosome walking and jumping.  Science . 1989;  245(4922) 1059-1065
  • 8 Higgins C F. ABC transporters: physiology, structure and mechanism-an overview.  Res Microbiol . 2001;  152 205-210
  • 9 Sheppard D N, Welsh M J. Structure and function of the CFTR chloride channel.  Physiol Rev . 1999;  79 (suppl 1) S23-S45
  • 10 Schwiebert E M, Benos D J, Egan M E, Stutts M J, Guggino W B. CFTR is a conductance regulator as well as a chloride channel.  Physiol Rev . 1999;  79 (suppl 1) S145-S166
  • 11 Bradbury N A. Intracellular CFTR: localization and function.  Physiol Rev . 1999;  79 (suppl 1) S175-S191
  • 12 Morral N, Bertranpetit J, Estivill X. et al . The origin of the major cystic fibrosis mutation (delta F508) in European populations.  Nat Genet . 1994;  7(2) 169-175
  • 13 Kerem B, Rommens J M, Buchanan J A. et al . Identification of the cystic fibrosis gene: genetic analysis.  Science . 1989;  245(4922) 1073-1080
  • 14 Population variation of common cystic fibrosis mutations. The Cystic Fibrosis Genetic Analysis Consortium.  Hum Mutat . 1994;  4(3) 167-177
  • 15 Tsui L C. The spectrum of cystic fibrosis mutations.  Trends Genet . 1992;  8 392-398
  • 16 Welsh M J, Smith A E. Molecular mechanisms of CFTR chloride channel dysfunction in cystic fibrosis.  Cell . 1993;  73 1251-1254
  • 17 Zielenski J, Tsui L C. Cystic fibrosis: genotypic and phenotypic variations.  Annu Rev Genet . 1995;  29 777-807
  • 18 Estivill X. Complexity in a monogenic disease.  Nat Genet . 1996;  12 348-350
  • 19 Fulmer S B, Schwiebert E M, Morales M M, Guggino W B, Cutting G R. Two cystic fibrosis transmembrane conductance regulator mutations have different effects on both pulmonary phenotype and regulation of outwardly rectified chloride currents.  Proc Natl Acad Sci USA . 1995;  92 6832-6836
  • 20 Sheppard D N, Rich D P, Ostedgaard L S, Gregory R J, Smith A E, Welsh M J. Mutations in CFTR associated with mild-disease-form Cl-channels with altered pore properties.  Nature . 1993;  362(6416) 160-164
  • 21 Highsmith W E, Burch L H, Zhou Z. et al . A novel mutation in the cystic fibrosis gene in patients with pulmonary disease but normal sweat chloride concentrations.  N Engl J Med . 1994;  331 974-980
  • 22 Cuppens H, Lin W, Jaspers M. et al . Polyvariant mutant cystic fibrosis transmembrane conductance regulator genes: the polymorphic (Tg)m locus explains the partial penetrance of the T5 polymorphism as a disease mutation.  J Clin Invest . 1998;  101 487-496
  • 23 De Braekeleer M, Allard C, Leblanc J P, Simard F, Aubin G. Genotype-phenotype correlation in cystic fibrosis patients compound heterozygous for the A455E mutation.  Hum Genet . 1997;  101 208-211
  • 24 Haardt M, Benharouga M, Lechardeur D, Kartner N, Lukacs G L. C-terminal truncations destabilize the cystic fibrosis transmembrane conductance regulator without impairing its biogenesis: a novel class of mutation.  J Biol Chem . 1999;  274 21873-21877
  • 25 Dequeker E, Cassiman J J. Evaluation of CFTR gene mutation testing methods in 136 diagnostic laboratories: report of a large European external quality assessment.  Eur J Hum Genet . 1998;  6 165-175
  • 26 Dequeker E, Cuppens H, Dodge J. et al . Recommendations for quality improvement in genetic testing for cystic fibrosis. European Concerted Action on Cystic Fibrosis.  Eur J Hum Genet . 2000;  8 (suppl 2) S2-S24
  • 27 Elles R. An overview of clinical molecular genetics.  Mol Biotechnol . 1997;  8 95-104
  • 28 Ravnik-Glavac M, Atkinson A, Glavac D, Dean M. DHPLC screening of cystic fibrosis gene mutations.  Hum Mutat . 2002;  19 374-383
  • 29 Orita M, Suzuki Y, Sekiya T, Hayashi K. Rapid and sensitive detection of point mutations and DNA polymorphisms using the polymerase chain reaction.  Genomics . 1989;  5 874-879
  • 30 Liechti-Gallati S, Schneider V, Neeser D, Kraemer R. Two buffer PAGE system-based SSCP/HD analysis: a general protocol for rapid and sensitive mutation screening in cystic fibrosis and any other human genetic disease.  Eur J Hum Genet . 1999;  7 590-598
  • 31 Bennett L C, Kraemer R, Liechti-Gallati S. Buccal cell DNA analysis in premature and term neonates: screening for mutations of the complete coding region for the cystic fibrosis transmembrane conductance regulator.  Eur J Pediat . 2000;  159 99-102
  • 32 Oppliger Leibundgut E, Liechti-Gallati S, Colombo J P, Wermuth B. Ornithine transcarbamylase deficiency: ten new mutations and high proportion of de novo mutations in heterozygous females.  Hum Mutat . 1997;  9 409-411
  • 33 Tanner S M, Schneider V, Thomas N S, Clarke A, Lazarou L, Liechti-Gallati S. Characterization of 34 novel and six known MTM1 gene mutations in 47 unrelated X-linked myotubular myopathy patients.  Neuromuscul Disord . 1999;  9 41-49
  • 34 Kleinle S, Schneider V, Moosmann P, Brandner S, Krahenbuhl S, Liechti-Gallati S. A novel mitochondrial tRNA(Phe) mutation inhibiting anticodon stem formation associated with a muscle disease.  Biochem Biophys Res Commun . 1998;  247 112-115
  • 35 Jaksch M, Kleinle S, Scharfe C. et al . Frequency of mitochondrial transfer RNA mutations and deletions in 225 patients presenting with respiratory chain deficiencies.  J Med Genet . 2001;  38 665-673
  • 36 Gallati S, Steiner B, Kraemer R. Transcription analysis as a new diagnostic tool in CF genetics. European Cystic Fibrosis Society (ECFS) Available at: http://www.ecfsoc.org/ Vienna/abstracts/WS2_1.htm 2001
  • 37 Steiner B, Sanz J, Gallati S. One-step PCR method to determine low levels of aberrantly spliced CFTR mRNA: application to nasal epithelial cells. European Working Group on CFTR Expression, Instituto Nacional de Saúde Dr Ricardo Jorge, Portugal [pdf]. Available at: http://central.igc.gulbenkian.pt/cftr/VR/transcripts.html. Accessed January 27 2002
  • 38 Grody W W, Cutting G R, Klinger K W, Richards C S, Watson M S, Desnick R J. Laboratory standards and guidelines for population-based cystic fibrosis carrier screening.  Genet Med . 2001;  3 149-154
  • 39 Khoury M J, McCabe L L, McCabe E RB. Population screening in the age of genomic medicine.  N Engl J Med . 2003;  348 50-58
  • 40 McCormick J, Green M W, Mehta G, Culross F, Mehta A. Demographics of the UK cystic fibrosis population: implications for neonatal screening.  Eur J Hum Genet . 2002;  10 583-590
  • 41 Heim R A, Sugarman M S, Allitto B A. Improved detection of cystic fibrosis mutations in the heterogeneous U.S  population using an expanded, pan-ethnic mutation panel. Genet Med . 2001;  3 168-176
  • 42 Farrell P M. Improving the health of patients with cystic fibrosis through newborn screening.  Adv Pediatr . 2000;  47 79-115
  • 43 Johansen H K, Nir M, Hoiby N, Koch C, Schwartz M. Severity of cystic fibrosis in patients homozygous and heterozygous for delta F508 mutation.  Lancet . 1991;  337 631-634
  • 44 Kristidis P, Bozon D, Corey M. et al . Genetic determination of exocrine pancreatic function in cystic fibrosis.  Am J Hum Genet . 1992;  50 1178-1184
  • 45 Dean M, White M B, Amos J. et al . Multiple mutations in highly conserved residues are found in mildly affected cystic fibrosis patients.  Cell . 1990;  61 863-870
  • 46 Ferrari M, Cremonesi L. Genotype-phenotype correlation in cystic fibrosis patients.  Ann Biol Clin (Paris) . 1996;  54 235-241
  • 47 Farrell P M, Kosorok M R, Laxova A. et al . Nutritional benefits of neonatal screening for cystic fibrosis. Wisconsin Cystic Fibrosis Neonatal Screening Study Group.  N Engl J Med . 1997;  337 963-969
  • 48 Kerem E, Corey M, Kerem B S. et al . The relation between genotype and phenotype in cystic fibrosis: analysis of the most common mutation (delta F508).  N Engl J Med . 1990;  323 1517-1522
  • 49 Santis G, Osborne L, Knight R, Hodson M E, Ramsay M. Genetic influences on pulmonary severity in cystic fibrosis.  Lancet . 1990;  335 294
  • 50 Burke W, Aitken M L, Chen S H, Scott C R. Variable severity of pulmonary disease in adults with identical cystic fibrosis mutations.  Chest . 1992;  102 506-509
  • 51 Borgo G, Gasparini P, Bonizzato A, Cabrini G, Mastella G, Pignatti P F. Cystic fibrosis: the delta F508 mutation does not lead to an exceptionally severe phenotype: a cohort study.  Eur J Pediatr . 1993;  152 1006-1011
  • 52 Gan K H, Geus W P, Bakker W, Lamers C B, Heijerman H G. Genetic and clinical features of patients with cystic fibrosis diagnosed after the age of 16 years.  Thorax . 1995;  50 1301-1304
  • 53 Hubert D, Bienvenu T, Desmazes-Dufeu N. et al . Genotype-phenotype relationships in a cohort of adult cystic fibrosis patients.  Eur Respir J . 1996;  9 2207-2214
  • 54 Correlation between genotype and phenotype in patients with cystic fibrosis. The Cystic Fibrosis Genotype-Phenotype Consortium.  N Engl J Med . 1993;  329 1308-1313
  • 55 Lester L A, Kraut J, Lloyd-Still J. et al . Delta F508 genotype does not predict disease severity in an ethnically diverse cystic fibrosis population.  Pediatrics . 1994;  93 114-118
  • 56 Salvatore F, Scudiero O, Castaldo G. Genotype-phenotype correlation in cystic fibrosis: the role of modifier genes.  Am J Med Genet . 2002;  111 88-95
  • 57 Liechti-Gallati S, Bonsall I, Malik N. et al . Genotype/phenotype association in cystic fibrosis: analyses of the delta F508, R553X, and 3905insT mutations.  Pediatr Res . 1992;  32 175-178
  • 58 Kraemer R, Birrer P, Liechti-Gallati S. Genotype-phenotype association in infants with cystic fibrosis at the time of diagnosis.  Pediatr Res . 1998;  44 920-926
  • 59 Kraemer R, Aebi C, Casaulta Aebischer C, Gallati S. Early detection of lung disease and its association with the nutritional status, genetic background and life events in patients with cystic fibrosis.  Respiration . 2000;  67 477-490
  • 60 Schibler A, Bolt I, Gallati S, Schoni M H, Kraemer R. High morbidity and mortality in cystic fibrosis patients compound heterozygous for 3905insT and deltaF508.  Eur Respir J . 2001;  17 1181-1186
  • 61 Chiba-Falek O, Parad R B, Kerem E, Kerem B. Variable levels of normal RNA in different fetal organs carrying a cystic fibrosis transmembrane conductance regulator splicing mutation.  Am J Respir Crit Care Med . 1999;  159 1998-2002
  • 62 Mak V, Jarvi K A, Zielenski J, Durie P, Tsui L C. Higher proportion of intact exon 9 CFTR mRNA in nasal epithelium compared with vas deferens.  Hum Mol Genet . 1997;  6 2099-2107
  • 63 Acton J D, Wilmott R W. Phenotype of CF and the effects of possible modifier genes.  Paediatr Respir Rev . 2001;  2 332-339
  • 64 Arkwright P D, Pravica V, Geraghty P J. et al . End-organ dysfunction in cystic fibrosis: association with angiotensin I converting enzyme and cytokine gene polymorphisms.  Am J Respir Crit Care Med . 2003;  167 384-389
  • 65 Mekus F, Laabs U, Veeze H, Tummler B. Genes in the vicinity of CFTR modulate the cystic fibrosis phenotype in highly concordant or discordant F508del homozygous sib pairs.  Hum Genet . 2003;  112 1-11
  • 66 Chu C S, Trapnell B C, Curristin S, Cutting G R, Crystal R G. Genetic basis of variable exon 9 skipping in cystic fibrosis transmembrane conductance regulator mRNA.  Nat Genet . 1993;  3 151-156
  • 67 Romey M C, Pallares-Ruiz N, Mange A. et al . A naturally occurring sequence variation that creates a YY1 element is associated with increased cystic fibrosis transmembrane conductance regulator gene expression.  J Biol Chem . 2000;  275 3561-3567
  • 68 Rowntree R, Harris A. DNA polymorphisms in potential regulatory elements of the CFTR gene alter transcription factor binding.  Hum Genet . 2002;  111 66-74
  • 69 Pagani F, Stuani C, Zuccato E, Kornblihtt A R, Baralle F E. Promoter architecture modulates CFTR exon 9 skipping.  J Biol Chem . 2003;  278 1511-1517
    >