Semin Respir Crit Care Med 2004; 25(1): 33-41
DOI: 10.1055/s-2004-822303
Copyright © 2004 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA.

Neutrophils in Innate Immunity

Qin Wang1 , Claire M. Doerschuk1 , Joseph P. Mizgerd2
  • 1Division of Integrative Biology, Department of Pediatrics, Rainbow Babies and Children's Hospital and Case Western Reserve University, Cleveland, Ohio
  • 2Physiology Program, Harvard School of Public Health, Boston, Massachusetts
Further Information

Publication History

Publication Date:
12 March 2004 (online)

Neutrophils are an important component of innate immunity in the lungs. During bacterial pneumonia, neutrophils are recruited from the capillaries of the pulmonary circulation in the gas-exchanging regions of the lungs. This process requires the coordinated activation of many cells within the lungs, including neutrophils and capillary endothelial cells. Cellular activation during innate immune responses is mediated in part by tumor necrosis factor-alpha (TNF-α) and interleukin (IL)-1-initiated signaling through their receptors, activation of nuclear factor kappa B (NF-κB) and downstream gene transcription, endothelial cell signaling initiated by neutrophil adherence to intercellular adhesion molecule (ICAM)-1, and binding of leukocyte adhesion molecules to cellular and matrix ligands. These events are essential to effective host defense during pneumonia.

REFERENCES

  • 1 Medzhitov R. Toll-like receptors and innate immunity.  Nat Rev Immunol. 2001;  1 135-145
  • 2 Ledebur H C, Parks T P. Transcriptional regulation of the intercellular adhesion molecule-1 gene by inflammatory cytokines in human endothelial cells: essential roles of a variant NF-kappa B site and p65 homodimers.  J Biol Chem. 1995;  270 933-943
  • 3 Wickremasinghe M I, Thomas L H, Friedland J S. Pulmonary epithelial cells are a source of IL-8 in the response to Mycobacterium tuberculosis: essential role of IL-1 from infected monocytes in a NF-kappa B-dependent network.  J Immunol. 1999;  163 3936-3947
  • 4 Black R A, Rauch C T, Kozlosky C J et al.. A metalloproteinase disintegrin that releases tumour-necrosis factor-alpha from cells.  Nature. 1997;  385 729-733
  • 5 Baud V, Karin M. Signal transduction by tumor necrosis factor and its relatives.  Trends Cell Biol. 2001;  11 372-377
  • 6 Grell M, Douni E, Wajant H et al.. The transmembrane form of tumor necrosis factor is the prime activating ligand of the 80 kDa tumor necrosis factor receptor.  Cell. 1995;  83 793-802
  • 7 Mukhopadhyay A, Suttles J, Stout R D, Aggarwal B B. Genetic deletion of the tumor necrosis factor receptor p60 or p80 abrogates ligand-mediated activation of nuclear factor-kappa B and of mitogen-activated protein kinases in macrophages.  J Biol Chem. 2001;  276 31906-31912
  • 8 Dinarello C A. Interleukin-1.  Cytokine Growth Factor Rev. 1997;  8 253-265
  • 9 Sims J E. IL-1 and IL-18 receptors, and their extended family.  Curr Opin Immunol. 2002;  14 117-122
  • 10 Nelson S, Bagby G J, Bainton B G et al.. Compartmentalization of intraalveolar and systemic lipopolysaccharide-induced tumor necrosis factor and the pulmonary inflammatory response.  J Infect Dis. 1989;  159 189-194
  • 11 Laichalk L L, Kunkel S L, Strieter R M et al.. Tumor necrosis factor mediates lung antibacterial host defenses in murine Klebsiella pneumonia.  Infect Immun. 1996;  64 5211-5218
  • 12 Fox-Dewhurst R, Alberts M K, Kajikawa O et al.. Pulmonary and systemic inflammatory responses in rabbits with gram-negative pneumonia.  Am J Respir Crit Care Med. 1997;  155 2030-2040
  • 13 Greene C, Lowe G, Taggart C et al.. Tumor necrosis factor-alpha-converting enzyme: its role in community-acquired pneumonia.  J Infect Dis. 2002;  186 1790-1796
  • 14 Bauer T T, Monton C, Torres A et al.. Comparison of systemic cytokine levels in patients with acute respiratory distress syndrome, severe pneumonia, and controls.  Thorax. 2000;  55 46-52
  • 15 Monton C, Torres A, El-Ebiary M et al.. Cytokine expression in severe pneumonia: a bronchoalveolar lavage study.  Crit Care Med. 1999;  27 1745-1753
  • 16 Ulich T R, Watson L R, Yin S M et al.. The intratracheal administration of endotoxin and cytokines, I: Characterization of LPS-induced IL-1 and TNF mRNA expression and the LPS-, IL-1-, and TNF-induced inflammatory infiltrate.  Am J Pathol. 1991;  138 1485-1496
  • 17 Blackwell T S, Lancaster L H, Blackwell T R et al.. Differential NF-κB activation after intratracheal endotoxin.  Am J Pathol. 1991;  138 1485-1496
  • 18 Mizgerd J P, Peschon J J, Doerschuk C M. Roles of tumor necrosis factor signaling during murine Escherichia coli pneumonia in mice.  Am J Respir Cell Mol Biol. 2000;  22 85-91
  • 19 Mizgerd J P, Spieker M R, Doerschuk C M. Early response cytokines and innate immunity: essential roles for TNFR1 and IL1R1 during Escherichia coli pneumonia in mice.  J Immunol. 2001;  166 4042-4048
  • 20 Dinarello C A. Proinflammatory cytokines.  Chest. 2000;  118 503-508
  • 21 Hashimoto I, Doerschuk C M. TNF and IL-1 are not required for the acute inflammatory response to S. pneumoniae in mice.  Am J Respir Crit Care Med. 2001;  163 A427
  • 22 Frevert C W, Huang S, Danaee H et al.. Functional characterization of the rat chemokine KC and its importance in neutrophil recruitment in a rat model of pulmonary inflammation.  J Immunol. 1995;  154 335-344
  • 23 Vik D, Amiguet P, Moffat G et al.. Structural features of the human C3 gene: intron/exon organization, transcriptional start site, and promoter region sequence.  Biochemistry. 1991;  30 1080-1085
  • 24 Shimizu H, Yamamoto K. NF-κB and C/EBP transcription factor families synergisitically function in mouse serum amyloid A gene expression induced by inflammatory cytokines.  Gene. 1994;  149 305-310
  • 25 Moon M, Parikh A, Pritts T et al.. Complement component C3 production in IL-1β-stimulated human intestinal epithelial cells is blocked by NF-κB inhibitors and by transfection with ser 32/36 mutant IκBα.  J Surg Res. 1999;  82 48-55
  • 26 Li Q, Verma I M. NF-kappaB regulation in the immune system.  Nat Rev Immunol. 2002;  2 725-734
  • 27 Hermanson O, Glass C K, Rosenfeld M G. Nuclear receptor coregulators: multiple modes of modification.  Trends Endocrinol Metab. 2002;  13 55-60
  • 28 Sadikot R T, Han W, Everhart M B et al.. Selective I kappa B kinase expression in airway epithelium generates neutrophilic lung inflammation.  J Immunol. 2003;  170 1091-1098
  • 29 Mizgerd J P, Scott M L, Spieker M R, Doerschuk C M. Functions of IκB proteins in inflammatory responses to E. coli LPS in mouse lungs.  Am J Respir Cell Mol Biol. 2002;  27 575-582
  • 30 Schwartz M D, Moore E E, Moore F A et al.. Nuclear factor-kappa B is activated in alveolar macrophages from patients with acute respiratory distress syndrome.  Crit Care Med. 1996;  24 1285-1292
  • 31 Moine P, McIntyre R, Schwartz M D et al.. NF-kappaB regulatory mechanisms in alveolar macrophages from patients with acute respiratory distress syndrome.  Shock. 2000;  13 85-91
  • 32 Ouaaz F, Li M, Beg A A. A critical role for the RelA subunit of nuclear factor kB in regulation of multiple immune-response genes and in Fas-induced cell death.  J Exp Med. 1999;  189 999-1004
  • 33 Kunsch C, Rosen C A. NF-κB subunit-specific regulation of the interleukin-8 promoter.  Mol Cell Biol. 1993;  13 6137-6146
  • 34 Kumasaka T, Quinlan W M, Doyle N A et al.. The role of ICAM-1 in endotoxin-induced pneumonia evaluated using ICAM-1 antisense oligonucleotides, anti-ICAM-1 monoclonal antibodies, and ICAM-1 mutant mice.  J Clin Invest. 1996;  97 2362-2369
  • 35 Schmal H, Shanley T P, Jones M L et al.. Role for macrophage inflammatory protein-2 in lipopolysaccharide-induced lung injury in rats.  J Immunol. 1996;  156 1963-1972
  • 36 Beg A A, Sha W C, Bronson R T et al.. Embryonic lethality and liver degeneration in mice lacking the RelA component of NF-κB.  Nature. 1995;  376 167-170
  • 37 Alcamo E A, Mizgerd J P, Horwitz B H et al.. Targeted mutation of tumor necrosis factor 1 rescues the RelA-deficient mouse and reveals a critical role for NF-κB in leukocyte recruitment.  J Immunol. 2001;  167 1592-1600
  • 38 Baer M, Dillner A, Schwartz R C et al.. Tumor necrosis factor alpha transcription in macrophages is attenuated by an autocrine factor that preferentially induces NF-kappaB p50.  Mol Cell Biol. 1998;  18 5678-5689
  • 39 Beg A A, Sha W C, Bronson R T, Baltimore D. Constitutive NF-κB activation, enhanced granulopoiesis, and neonatal lethality in IκBα-deficient mice.  Genes Dev. 1995;  9 2736-2746
  • 40 Baer M, Dillner A, Schwartz R C et al.. Tumor necrosis factor alpha transcription in macrophages is attenuated by an autocrine factor that preferentially induces NF-kappaB p50.  Mol Cell Biol. 1998;  18 5678-5689
  • 41 Bohuslav J, Kravchenko V K, Parry G CN et al.. Regulation of an essential innate immune response by the p50 subunit of NF-κB.  J Clin Invest. 1998;  102 1645-1652
  • 42 Udalova I A, Richardson A, Denys A et al.. Functional consequences of a polymorphism affecting NF-kappaB p50-p50 binding to the TNF promoter region.  Mol Cell Biol. 2000;  20 9113-9119
  • 43 Sheppard K A, Phelps K M, Williams A J et al.. Nuclear integration of glucocorticoid receptor and nuclear factor-kappaB signaling by CREB-binding protein and steroid receptor coactivator-1.  J Biol Chem. 1998;  273 29291-29294
  • 44 McKay L I, Cidlowski J A. CBP (CREB binding protein) integrates NF-kappaB (nuclear factor-kappaB) and glucocorticoid receptor physical interactions and antagonism.  Mol Endocrinol. 2000;  14 1222-1234
  • 45 Rossi A, Kapahi P, Natoli G et al.. Anti-inflammatory cyclopentenone prostaglandins are direct inhibitors of IkappaB kinase.  Nature. 2000;  403 103-108
  • 46 Ashburner B P, Westerheide S D, Baldwin Jr A S. The p65 (RelA) subunit of NF-kappaB interacts with the histone deacetylase (HDAC) corepressors HDAC1 and HDAC2 to negatively regulate gene expression.  Mol Cell Biol. 2001;  21 7065-7077
  • 47 Chen L, Fischle W, Verdin E, Greene W C. Duration of nuclear NF-kappaB action regulated by reversible acetylation.  Science. 2001;  293 1653-1657
  • 48 Sosic D, Richardson J A, Yu K et al.. Twist regulates cytokine gene expression through a negative feedback loop that represses NF-kappaB activity.  Cell. 2003;  112 169-180
  • 49 Burns A R, Takei F, Doerschuk C M. Quantitation of ICAM-1 expression in mouse lung during pneumonia.  J Immunol. 1994;  153 3189-3198
  • 50 Kang B H, Manderschied B D, Huang Y C, Crapo J D, Chang L Y. Contrasting response of lung parenchymal cells to instilled TNF alpha and IFN gamma: the inducibility of specific cell ICAM-1 in vivo.  Am J Respir Cell Mol Biol. 1996;  15 540-550
  • 51 Doerschuk C M. Mechanisms of leukocyte sequestration in inflamed lungs.  Microcirculation. 2001;  8 71-88
  • 52 Doerschuk C M, Quinlan W M, Doyle N A et al.. The role of P-selectin and ICAM-1 in acute lung injury as determined using blocking antibodies and mutant mice.  J Immunol. 1996;  157 4609-4614
  • 53 Kumasaka T, Quinlan W M, Doyle N A et al.. Role of the intercellular adhesion molecule-1 (ICAM-1) in endotoxin-induced pneumonia evaluated using ICAM-1 antisense oligonucleotides, anti-ICAM-1 monoclonal antibodies, and ICAM-1 mutant mice.  J Clin Invest. 1996;  97 2362-2369
  • 54 Qin L, Quinlan W M, Doyle N A et al.. The roles of CD11/CD18 and ICAM-1 in acute Pseudomonas aeruginosa-induced pneumonia in mice.  J Immunol. 1996;  157 5016-5021
  • 55 Barreiro O, Yanez-Mo M, Serrador J M et al.. Dynamic interaction of VCAM-1 and ICAM-1 with moesin and ezrin in a novel endothelial docking structure for adherent leukocytes.  J Cell Biol. 2002;  157 1233-1245
  • 56 Thompson P W, Randi A M, Ridley A J. Intercellular adhesion molecule (ICAM)-1, but not ICAM-2, activates RhoA and stimulates c-fos and rhoA transcription in endothelial cells.  J Immunol. 2002;  169 1007-1013
  • 57 Tilghman R W, Hoover R L. The Src-cortactin pathway is required for clustering of E-selectin and ICAM-1 in endothelial cells.  FASEB J. 2002;  16 1257-1259
  • 58 Hubbard A K, Rothlein R. Intercellular adhesion molecule-1 (ICAM-1) expression and cell signaling cascades.  Free Radic Biol Med. 2000;  28 1379-1386
  • 59 Tsakadze N L, Zhao A, D'Souza S E. Interactions of intercellular adhesion molecule-1 with fibrinogen.  Trends Cardiovasc Med. 2002;  12 101-108
  • 60 Wang Q, Doerschuk C M. The signaling pathways induced by neutrophil-endothelial cell adhesion.  Antioxid Redox Signal. 2002;  4 39-47
  • 61 Sans E, Delachanal E, Duperray A. Analysis of the roles of ICAM-1 in neutrophil transmigration using a reconstituted mammalian cell expression model: implication of ICAM-1 cytoplasmic domain and Rho-dependent signaling pathway.  J Immunol. 2001;  166 544-551
  • 62 Wang Q, Doerschuk C M. Neutrophil-induced changes in the biomechanical properties of endothelial cells: the roles of ICAM-1 and oxidants.  J Immunol. 2000;  164 6487-6494
  • 63 Wang Q, Doerschuk C M. The p38 mitogen-activated protein kinase mediates cytoskeletal remodeling in pulmonary microvascular endothelial cells upon ICAM-1 ligation.  J Immunol. 2001;  166 6877-6884
  • 64 Wang Q, Chiang E T, Lim M et al.. Changes in the biomechanical properties of neutrophils and endothelial cells during adhesion.  Blood. 2001;  97 660-668
  • 65 Wang Q, Pfeiffer II G R, Stevens T, Doerschuk C M. Lung microvascular and arterial endothelial cells differ in their responses to intercellular adhesion molecule-1 ligation.  Am J Respir Crit Care Med. 2002;  166 872-877
  • 66 Walker D C, Behzad A R, Chu F. Neutrophil migration through preexisting holes in the basal laminae of alveolar capillaries and epithelium during streptococcal pneumonia.  Microvasc Res. 1995;  50 397-416
  • 67 Behzad A R, Chu F, Walker D C. Fibroblasts are in a position to provide directional information to migrating neutrophils during pneumonia in rabbit lungs.  Microvasc Res. 1996;  51 303-316
  • 68 Shen J, Ham R G, Karmiol S. Expression of adhesion molecules in cultured human pulmonary microvascular endothelial cells.  Microvasc Res. 1995;  50 360-372
  • 69 Cooper J A. Effects of cytochalasin and phalloidin on actin.  J Cell Biol. 1987;  105 1473-1478
  • 70 Bubb M R, Senderowicz A MJ, Sausville E A, Duncan K LK, Korn E D. Jasplakinolide, a cytotoxic natural product, induces actin polymerization and competitively inhibits the binding of phalloidin to F-actin.  J Biol Chem. 1994;  269 14869-14871
  • 71 Wojciak-Stothard B, Williams L, Ridley A J. Monocyte adhesion and spreading on human endothelial cells is dependent on Rho-regulated receptor clustering.  J Cell Biol. 1999;  145 1293-1307
  • 72 Huot J, Houle F, Marceau F, Landry J. Oxidative stress-induced actin reorganization mediated by p38 mitogen-activated protein kinase/heat shock protein 27 pathways in vascular endothelial cells.  Circ Res. 1997;  80 383-392
  • 73 Mueller G A, Quinlan W M, Doyle N A, Doerschuk C M. The role of cytoskeletal proteins in neutrophil emigration during pneumonia in rabbits.  Am J Respir Crit Care Med. 1994;  150 455-461
  • 74 Goldman G, Welbourn R, Klausner J M et al.. Attenuation of acid aspiration edema with phalloidin.  Am J Physiol. 1990;  259 L378-L383
  • 75 Tasaka S, Mizgerd J P, Doerschuk C M. Acute inflammatory response during streptococal pneumonia is reduced in interferon-γ deficient mice.  Am J Respir Crit Care Med. 1999;  159 A483
  • 76 Tasaka S, Richer S E, Mizgerd J P, Doerschuk C M. VLA-4 in CD18-independent neutrophil emigration during acute bacterial pneumonia in mice.  Am J Respir Crit Care Med. 2002;  166 53-60
  • 77 Tasaka S, Qin L, Kutkoski G J, Albelda S M, DeLisser H M, Doerschuk C M. The role of PECAM-1 (CD31) in neutrophil emigration during acute bacterial pneumonia in mice and rats.  Am J Respir Crit Care Med. 2003;  167 164-170
  • 78 Wang Q, Teder P, Judd N P, Noble P W, Doerschuk C M. CD44 deficiency leads to enhanced neutrophil migration and lung injury in E. coli pneumonia in mice.  Am J Pathol. 2002;  161 2219-2228
  • 79 Ridger V C, Wagner B E, Wallace W AH, Hellewell P G. Differential effects of CD18, CD29, and CD49 integrin subunit inhibition on neutrophil migration in pulmonary inflammation.  J Immunol. 2001;  166 3484-3490

Claire M DoerschukM.D. 

Rainbow Babies and Children's Hospital, Room 787

11100 Euclid Ave., Cleveland

OH 44106

Email: cmd22@po.cwru.edu

    >