Neuropediatrics 2006; 37(1): 20-25
DOI: 10.1055/s-2006-923933
Original Article

Georg Thieme Verlag KG Stuttgart · New York

Clinical Findings and a Therapeutic Trial in the First Patient with β-Ureidopropionase Deficiency

B. Assmann1 , 2 , G. Göhlich3 , M. Baethmann3 , R. A. Wevers4 , A. H. Van Gennip5 , 7 , A. B. P. Van Kuilenburg5 , C. Dietrich2 , L. Wagner2 , J. J. Rotteveel6 , J. Schaper8 , E. Mayatepek1 , G. F. Hoffmann2 , T. Voit3
  • 1Department of General Pediatrics, University Children's Hospital, Duesseldorf, Germany
  • 2Department of General Pediatrics, University-Children's Hospital, Heidelberg, Germany
  • 3Department of Pediatrics and Pediatric Neurology, University Children's Hospital, Essen, Germany
  • 4University Medical Centre Nijmegen, Institute of Neurology, Nijmegen, The Netherlands
  • 5Academic Medical Centre Amsterdam, Laboratory Genetic Metabolic Diseases, Amsterdam, The Netherlands
  • 6Interdisciplinary Child Neurology Centre (IKNC), Sint Radboudziekenhuis, Nijmegen, The Netherlands
  • 7Academic Hospital Maastricht, Departments of Biochemical Genetics and Clinical Chemistry, Maastricht, The Netherlands
  • 8Institute of Diagnostic Radiology, University Hospital, Duesseldorf, Germany
Further Information

Publication History

Received: May 28, 2005

Accepted after Revision: January 6, 2006

Publication Date:
15 March 2006 (online)

Abstract

The clinical, neurophysiological and neuroradiological work-up as well as the results of a specific treatment trial are presented of the first patient diagnosed with β-ureidopropionase deficiency (E. C. 3.5.1.6, McKusick 606673). The patient presented with an early-onset dystonic movement disorder, severe developmental delay with marked impairment of visual responsiveness in combination with severely delayed myelination in magnetic resonance imaging studies. In addition, there were partial optic atrophy, pigmentary retinopathy and mild cerebellar hypoplasia. The enzyme defect was expected to lead to intracerebral deficiency of β-alanine which seems to be a neuromodulator at inhibitory synapses. Therefore, a therapeutic trial with supplementation of β-alanine was undertaken over 1.5 years with no convincing clinical improvement.

References

  • 1 Assmann B, Hoffmann G F, Wagner L, Brautigam C, Seyberth H W, Duran M. et al . Dihydropyrimidinase deficiency and congenital microvillous atrophy: coincidence or genetic relation?.  J Inherit Metab Dis. 1997;  20 681-688
  • 2 Assmann B, Göhlich-Ratmann G, Bräutigam C, Wagner L, Moolenar S, Engelke U. et al . Presumptive ureidopropionase deficiency as a new defect in pyrimidine catabolism found with in vitro H‐NMR spectroscopy.  J Inher Metab Disord. 1998;  21 1
  • 3 Borden L A. GABA transporter heterogeneity: pharmacology and cellular localization.  Neurochem Int. 1996;  29 335-356
  • 4 Brandt I. Pre- and postnatal head growth. Falkner F, Tanner JM Human growth. A comprehensive treatise. New York; Plenum Publishing Corp 1977
  • 5 Chebib M, Johnston G AR. Stimulation of [3H] GABA and β-[3H] alanine release from rat brain slices by cis-4-aminocrotonic acid.  J Neurochem. 1997;  68 786-794
  • 6 Defeudis F V, Martin d R. Is beta-alanine an inhibitory neurotransmitter?.  Gen Pharmacol. 1977;  8 177-180
  • 7 Duran M, Rovers P, de Bree P K, Schreuder C H, Beukenhorst H, Dorland L. et al . Dihydropyrimidinuria: a new inborn error of pyrimidine metabolism.  J Inherit Metab Dis. 1991;  14 367-370
  • 8 Fykse E M, Fonnum F. Amino acid neurotransmission: dynamics of vesicular uptake.  Neurochem Res. 1996;  21 1053-1060
  • 9 Gibson K M, Jakobs C. Disorders of beta- and gamma-amino acids in free and peptide-linked forms. Scriver CR, Beaudet AL The metabolic and molecular bases of inherited disease. New York; McGraw-Hill 2000: 2079-2105
  • 10 Hamajima N, Kouwaki M, Vreken P, Matsuda K, Sumi S, Imaeda M. et al . Dihydropyrimidinase deficiency: structural organization, chromosomal localization, and mutation analysis of the human dihydropyrimidinase gene.  Am J Hum Genet. 1998;  63 717-726
  • 11 Jaeken J, Casaer P, de Cock P, Corbeel L, Eeckels R, Eggermont E. et al . Gamma-aminobutyric acid-transaminase deficiency: a newly recognized inborn error of neurotransmitter metabolism.  Neuropediatrics. 1984;  15 165-169
  • 12 Kihara M, Misu Y, Kubo T. Release by electrical stimulation of endogeneous glutamate, gamma-aminobutyric acid and other amino acids from slices of the rat medulla oblongata.  J Neurochem. 1989;  52 261-267
  • 13 Kolker S, Okun J G, Horster F, Assmann B, Ahlemeyer B, Kohlmuller D. et al . 3-Ureidopropionate contributes to the neuropathology of 3-ureidopropionase deficiency and severe propionic aciduria: a hypothesis.  J Neurosci Res. 2001;  66 666-673
  • 14 Komura J, Tamai I, Senmaru M, Terasaki T, Sai Y, Tsuji A. Brain-to-blood active transport of beta-alanine across the blood-brain barrier.  FEBS Lett. 1997;  400 131-135
  • 15 Lake N, De Marte L. Effects of beta-alanine treatment on the taurine and DNA content of the rat heart and retina.  Neurochem Res. 1988;  13 1003-1006
  • 16 Lu P, Xu W, Sturman J A. Dietary beta-alanine results in taurine depletion and cerebellar damage in adult cats.  J Neurosci Res. 1996;  43 112-119
  • 17 O'Connor V, Phelan P P, Fry J P. Interactions of glycine and strychnine with their receptor recognition sites in mouse spinal cord.  Neurochem Int. 1996;  29 423-434
  • 18 Omura K. Clinical implications of dihydropyrimidine dehydrogenase (DPD) activity in 5-FU-based chemotherapy: mutations in the DPD gene and inhibitory fluoropyrimidines.  Int J Clin Oncol. 2003;  8 132-138
  • 19 Pullan L M, Powel R J. Comparison of binding at strychnine-sensitive (inhibitory glycine receptor) and strychnine-insensitive (N-methyl-D-aspartate receptor) glycine binding sites.  Neurosci Lett. 1992;  148 199-201
  • 20 Putman C W, Rotteveel J J, Wevers R A, Van Gennip A H, Bakkeren J A, De Abreu R A. Dihydropyrimidinase deficiency, a progressive neurological disorder?.  Neuropediatrics. 1997;  28 106-110
  • 21 Rajendra S, Lynch J W, Schofield P R. The glycine receptor.  Pharmacol Ther. 1997;  73 121-146
  • 22 Sandberg M, Jacobson I. Beta-alanine, a possible neurotransmitter in the visual system?.  J Neurochem. 1981;  37 1353-1356
  • 23 Saransaari P, Oja S S. Uptake and release of β-alanine in cerebellar granule cells in primary culture: regulation of release by glutamatergic and gabaergic receptors.  Neuroscience. 1993;  53 475-481
  • 24 Saransaari P, Oja S S. β-Alanine release from the adult and developing hippocampus is enhanced by iontotropic glutamate receptor agonists and cell-damaging conditions.  Neurochemical Research. 1999;  24 407-414
  • 25 Schweitzer-Krantz S, van Kuilenburg A, van Gennip A, Lehnert W. Dihydropyrimidine dehydrogenase deficiency and arthrogryposis multiplex congenita: clinical improvement under substitution of beta-alanine and beta-aminoisobutyric acid.  J Inherit Metab Dis. 2002;  25 155
  • 26 Shinohara T, Harada M, Ogi K, Maruyama M, Fujii R, Tanaka H. et al . Identification of a G protein-coupled receptor specifically responsive to beta-alanine.  J Biol Chem. 2004;  279 23559-23564
  • 27 Tanganelli S, Ferraro L, Bianchi C, Beani L. Changes in gamma-aminobutyric acid release induced by topical administration of drugs affecting its metabolism and receptors: studies in freely moving guinea pigs with epidural cups.  Neurochem Int. 1992;  21 15-20
  • 28 Tanner J M, Whitehouse R H. Height and weight charts from birth to 5 years allowing for length of gestation. For use in infant welfare clinics.  Arch Dis Child. 1973;  48 786-789
  • 29 Toggenburger G, Felix D, Cuénod M, Henke H. In vitro release of endogeneous β-alanine, GABA and glutamate and electrophysiological effect of β-alanine in pigeon optic tectum.  J Neurochem. 1982;  39 176-183
  • 30 Van Gennip A H, De Abreu R A, Van Lenthe H, Bakkeren J, Rotteveel J, Vreken P. et al . Dihydropyrimidinase deficiency: confirmation of the enzyme defect in dihydropyrimidinuria.  J Inherit Metab Dis. 1997;  20 339-342
  • 31 Van Kuilenburg A B, Vreken P, Abeling N G, Bakker H D, Meinsma R, Van Lenthe H. et al . Genotype and phenotype in patients with dihydropyrimidine dehydrogenase deficiency.  Hum Genet. 1999;  104 1-9
  • 32 Van Kuilenburg A B, Van Lenthe H, Assmann B, Gohlich-Ratmann G, Hoffmann G F, Brautigam C. et al . Detection of beta-ureidopropionase deficiency with HPLC-electrospray tandem mass spectrometry and confirmation of the defect at the enzyme level.  J Inherit Metab Dis. 2001;  24 725-732
  • 33 Van Kuilenburg A B, Meinsma R, Zonnenberg B A, Zoetekouw L, Baas F, Matsuda K. et al . Dihydropyrimidinase deficiency and severe 5-fluorouracil toxicity.  Clin Cancer Res. 2003;  9 4363-4367
  • 34 Van Kuilenburg A B, Meinsma R, Beke E, Assmann B, Ribes A, Lorente I. et al . Beta-ureidopropionase deficiency: an inborn error of pyrimidine degradation associated with neurological abnormalities.  Hum Mol Genet. 2004;  13 2793-2801
  • 35 Van Kuilenburg A B, Stroomer A E, Van Lenthe H, Abeling N G, Van Gennip A H. New insights in dihydropyrimidine dehydrogenase deficiency: a pivotal role for beta-aminoisobutyric acid?.  Biochem J. 2004;  379 119-124
  • 36 Wessberg P, Hedner J, Hedner T, Jonason J. Central respiratory and cardiovascular effects in the rat of some putative neurotransmitter amino acids.  Naunyn Schmiedebergs Arch Pharmacol. 1983;  323 58-65
  • 37 Wu F S, Gibbs T T, Farb D H. Dual activation of GABA A and glycine receptors by beta-alanine: inverse modulation by progesterone and 5-alpha-pregnan-3-alpha-ol-20-one.  Eur J Pharmacol. 1993;  246 239-246

Dr. Birgit Assmann

Department of General Pediatrics
University Children's Hospital

Moorenstrasse 5

40225 Duesseldorf

Germany

Email: Birgit.Assmann@uni-duesseldorf.de

    >