Plant Biol (Stuttg) 2006; 8(5): 706-714
DOI: 10.1055/s-2006-924171
Research Paper

Georg Thieme Verlag Stuttgart KG · New York

Cadmium Induces Changes in Sucrose Partitioning, Invertase Activities, and Membrane Functionality in Roots of Rangpur Lime (Citrus limonia L. Osbeck)

G. Podazza1 , M. Rosa2 , J. A. González1 , M. Hilal2 , F. E. Prado2
  • 1Fundación Miguel Lillo, Area Botánica. Miguel Lillo 251 CP 4000 Tucumán, Argentina
  • 2Cátedra de Fisiología Vegetal, Facultad de Ciencias Naturales e IML. Miguel Lillo 205 CP 4000 Tucumán, Argentina
Further Information

Publication History

Received: December 29, 2005

Accepted: March 28, 2006

Publication Date:
01 August 2006 (online)

Abstract

Cadmium (Cd) uptake effects on sucrose content, invertase activities, and plasma membrane functionality were investigated in Rangpur lime roots (Citrus limonia L. Osbeck). Cadmium accumulation was significant in roots but not in shoots and leaves. Cadmium produced significant reduction in roots DW and increment in WC. Leaves and shoots did not show significant differences on both parameters. Sucrose content was higher in control roots than in Cd-exposed ones. Apoplastic sucrose content was much higher in Cd-exposed roots than in control ones. Cd-exposed roots showed a significant decrease in both cell wall-bound and cytoplasmic (neutral) invertase activities; while the vacuolar isoform did not show any change. Alterations in lipid composition and membrane fluidity of Cd-exposed roots were also observed. In Cd-exposed roots phospholipid and glycolipid contents decreased about 50 %, while sterols content was reduced about 22 %. Proton extrusion was inhibited by Cd. Lipid peroxidation and proton extrusion inhibition were also detected by histochemical analysis. This work's findings demonstrate that Cd affects sucrose partitioning and invertase activities in apoplastic and symplastic regions in Rangpur lime roots as well as the plasma membrane functionality and H+-ATPase activity.

References

  • 1 Ames B. N.. Assay of inorganic phosphate, total phosphate and phosphatases.  Methods in Enzymology. (1966);  8 115-118
  • 2 Arduini I., Godbold D. L., Onnis A.. Cadmium and copper change root growth and morphology of Pinus pinea and Pinus pinaster seedlings.  Physiologia Plantarum. (1994);  92 675-680
  • 3 Baker A. J. M.. Environmentally-induced cadmium tolerance in the grass Holcus lanatus L.  Chemosphere. (1984);  13 585-589
  • 4 Baker A. J. M., Walker P. L.. Physiological responses of plants to heavy metals and the quantification of tolerance and toxicity.  Chemical Speciation and Bioavailability. (1989);  1 7-17
  • 5 Barceló J., Poschenrieder C., Andreu I., Gunsé B.. Cadmium-induced decrease of water stress resistance in bush bean plants (Phaseolus vulgaris L. Cv. Contender). I. Effects of Cd on water potential, relative water content and cell wall elasticity.  Journal of Plant Physiology. (1986);  125 17-25
  • 6 Barceló J., Vázquez M. D., Poschenrieder C.. Cadmium-induced structural and ultrastructural changes in the vascular system of bush bean stems.  Botanica Acta. (1988);  101 254-261
  • 7 Bernal M. P., McGrath S. P.. Effects of pH and heavy metal concentrations in solution culture on the proton release, growth and elemental composition of Alyssum murale and Raphanus sativus L.  Plant and Soil. (1994);  166 83-92
  • 8 Breckle S. W.. Growth under stress. Heavy metals. Waisel, Y. and Akafkafi, U., eds. Plant Roots: The Hidden Half. New York, USA; Marcel Dekker (1991): 351-373
  • 9 Cardini C., Leloir L. F., Chiriboga J.. The biosynthesis of sucrose.  Journal of Biological Chemistry. (1955);  214 149-155
  • 10 Chen S. L., Chen  T., Kao H.. Acidification of deionized water by roots of intact rice seedlings.  Plant and Cell Physiology. (1990);  31 569-573
  • 11 Citovsky V., Ghoshroy S., Tsui F., Klessig D.. Non-toxic concentrations of cadmium inhibit systemic movement of turnip vein clearing virus by a salicylic acid-independent mechanism.  The Plant Journal. (1998);  16 13-20
  • 12 Cohen C. K., Fox T. C., Garvin D. F., Kochian L. V.. The role of iron-deficiency stress responses in stimulating heavy-metal transport in plants.  Plant Physiology. (1998);  116 1063-1072
  • 13 Das P., Samantaray S., Rout G. R.. Studies on cadmium toxicity in plants: a review.  Environmental Pollution. (1997);  98 29-36
  • 14 Fodor A., Szabó-Nagy A., Erdei L.. The effects of cadmium on the fluidity and H+-ATPase activity of plasma membrane from sunflower and wheat roots.  Journal of Plant Physiology. (1995);  14 787-792
  • 15 Gallego S. M., Benavides M. P., Tomaro M. L.. Effect of heavy metal ion excess on sunflower leaves: evidence for involvement of oxidative stress.  Plant Science. (1996);  121 151-159
  • 16 Gong J. M., Lee D. A., Schroeder J. I.. Long-distance root-to-shoot transport of phytochelatins and cadmium in Arabidopsis.  Proceedings of the National Academy of Sciences of the USA. (2003);  100 10118-10123
  • 17 Greger M., Bertell G.. Effects of Ca2+ and Cd2+ on the carbohydrate metabolism in sugar beet (Beta vulgaris).  Journal of Experimental Botany. (1992);  43 167-173
  • 18 Greger M., Brammer E., Lindberg S., Larsson G., Idestam-Almquist J.. Uptake and physiological effects of cadmium in sugar beet (Beta vulgaris) related to mineral provision.  Journal of Experimental Botany. (1991);  42 729-737
  • 19 Greger M., Johansson M.. Cadmium effects on leaf transpiration of sugar beet (Beta vulgaris).  Physiologia Plantarum. (1992);  86 465-473
  • 20 Greger M., Lindberg S.. Effects of Cd2+ and EDTA on young sugar beets (Beta vulgaris). I. Cd2+ uptake and sugar accumulation.  Physiologia Plantarum. (1986);  66 69-74
  • 21 Greiner S., Krausgrill S., Rausch T.. Cloning of a tobacco apoplastic invertase inhibitor. Proof of function of the recombinant protein and expression analysis during plant development.  Plant Physiology. (1998);  116 733-742
  • 22 Hall J. L.. Cellular mechanisms for heavy metal detoxification and tolerance.  Journal of Experimental Botany. (2002);  53 1-11
  • 23 Hart B. A., Scaife B. D.. Toxicity and bioaccumulation of cadmium in Chlorella pyrenoidosa.  Environmental Research. (1977);  14 401-413
  • 24 Hernández L. E., Cooke D. T.. Modification of the root plasma membrane lipid composition of cadmium-treated Pisum sativum.  Journal of Experimental Botany. (1997);  48 1375-1381
  • 25 Hertstein U., Jager H. J.. Tolerances of different populations of three grass species to cadmium and other metals.  Environmental and Experimental Botany. (1986);  26 309-319
  • 26 Hothorn M., D'Angelo I., Márquez J. A., Greiner S., Scheffzek K.. The invertase inhibitor Nt-CIF from tobacco: a highly thermostable four-helix bundle with an unusual N-terminal extension.  Journal of Molecular Biology. (2004);  335 987-995
  • 27 Hsu Y. T., Kao C. H.. Role of abscisic acid in cadmium tolerance of rice (Oryza sativa L.) seedlings.  Plant, Cell and Environment. (2003);  26 867-874
  • 28 Iivonen S., Saranpää P., Sutien M. L., Vapaavuori E.. Effects of temperature and nutrient availability on plasma membrane lipid composition in Scott pine roots during growth initiation.  Tree Physiology. (2004);  24 437-446
  • 29 Jastrow J., Koeppe D. E.. Uptake and effects of cadmium in higher plants. Nriagu, I. O., ed. Cadmium in the Environment. Part I: Ecological Cycling. New York; John Wiley and Sons/Wiley-Interscience Publication (1980): 608-638
  • 30 Kabata-Pendias A., Pendias H.. Trace Elements in Soil and Plants, 3rd ed. Boca Raton, Florida, USA; CRC Press (2000)
  • 31 Kingston-Smith A. H., Walker R. P., Pollock C. J.. Invertase in leaves: conundrum or control point?.  Journal of Experimental Botany. (1999);  50 735-743
  • 32 Krieger N. S., Tashjian Jr. A. H.. Inhibition of stimulated bone resorption by vanadate.  Endocrinology. (1983);  113 324-328
  • 33 Lee H. S., Sturm A.. Purification and characterization of neutral and alkaline invertase from carrot.  Plant Physiology. (1996);  112 1513-1522
  • 34 Liang Y., Zhang W., Chen Q., Ding R.. Effects of silicon on H+-ATPase and H+-PPase activity, fatty acid composition and fluidity of tonoplast vesicles from roots of salt-stressed barley (Hordeum vulgare L.).  Environmental and Experimental Botany. (2005);  53 29-37
  • 35 Liu D., Jiang W., Gao X.. Effects of cadmium on root growth, cell division and nucleoli in root tip cells of garlic.  Biologia Plantarum. (2003);  47 79-83
  • 36 Lynch M. J., Raphael S. S., Meldon L. D., Space P. D., Hillis P., Inwood M. J. H.. Medical Laboratory Technology. London, England; WB Saunders (1963)
  • 37 Meharg A. A.. The role of the plasmalemma in metal tolerance in angiosperms.  Physiologia Plantarum. (1993);  88 191-198
  • 38 Meuwly P., Rauser W. E.. Alteration of thiol pools in roots and shoots of maize seedlings exposed to cadmium.  Plant Physiology. (1992);  99 8-15
  • 39 Michelet B., Boutry M.. The plasma membrane H+-ATPase. A highly regulated enzyme with multiple physiological functions.  Plant Physiology. (1995);  108 1-6
  • 40 Moya J. L., Ros R., Picazo I.. Influence of cadmium and nickel on growth, net photosynthesis and carbohydrate distribution in rice plants.  Photosynthesis Research. (1993);  36 75-80
  • 41 Nocito F. F., Pirovano L., Cocucci M., Sacchi G. A.. Cadmium-induced sulphate uptake in maize roots.  Plant Physiology. (2002);  129 1872-1879
  • 42 Ouariti O., Boussama N., Zarrouk M., Cherif A., Ghorbal M. H.. Cadmium- and copper-induced changes in tomato membrane lipids.  Phytochemistry. (1997);  45 1343-1350
  • 43 Ouzounidou G., Moustakas M., Eleftherious E. P.. Physiological and ultrastructural effects of cadmium on wheat (Triticum aestivum L.) leaves.  Archives of Environmental Contamination and Toxicology. (1992);  32 154-160
  • 44 Palta J. P., Whitaker B. D., Weiss L. S.. Plasma membrane lipids associated with genetic variability in freezing tolerance and cold acclimation of Solanum species.  Plant Physiology. (1993);  103 793-803
  • 45 Perfus-Barbeoch L., Leonhardt N., Vavasseur A., Forestier C.. Heavy metal toxicity: cadmium permetes through calcium channels and disturbs the plant water status.  The Plant Journal. (2002);  32 539-548
  • 46 Peterson P. J., Alloway B. J.. The Chemistry, Biochemistry and Biology of Cadmium. Amsterdam, The Netherlands; Elsevier Biomedical Press (1979)
  • 47 Pollock C. J., Farrar J. F.. Source-sink relations: the role of sucrose. Baker, N. R., ed. Photosynthesis and the Environment. Amsterdam, The Netherlands; Kluwer Academic Publishers (1996): 261-279
  • 48 Pompella A., Maellaro E., Casini A. F., Compoti M.. Histochemical detection of lipid peroxidation in liver of bromocrezene-poisoned mice.  American Journal of Pathology. (1987);  129 295-301
  • 49 Prado F. E., Boero C., Gallardo M., González J. A.. Effect of NaCl on growth germination and soluble sugars content in Chenopodium quinoa Willd. seeds.  Botanical Bulletin of Academia Sinica. (2000);  41 19-26
  • 50 Prado F. E., Fleischmacher O. L., Vattuone M. A., Sampietro A. R.. Cell wall invertases of sugar cane.  Phytochemistry. (1982);  21 2825-2828
  • 51 Prassad M. N. V.. Cadmium toxicity and tolerance in vascular plants.  Environmental and Experimental Botany. (1995);  35 525-545
  • 52 Punz W. F., Sieghardt H.. The response of roots of herbaceous plant species to heavy metals.  Environmental and Experimental Botany. (1993);  33 525-545
  • 53 Quartacci M. F., Cosi E., Navari-Izzo F.. Lipids and NADPH-dependent superoxide production in plasma membrane vesicles from roots of wheat grown under copper deficiency or excess.  Journal of Experimental Botany. (2001);  52 77-84
  • 54 Rauser W. E.. Phytochelatins and related peptides. Structure, biosynthesis, and function.  Plant Physiology. (1995);  109 1141-1149
  • 55 Robinson N. J., Jackson P. J.. Metallothionein-like metal complexes in angiosperms; their structure and function.  Plant Physiology. (1986);  67 499-506
  • 56 Roe J. H., Papadopoulos N. M.. The determination of fructose-6-phosphate and fructose-1,6-diphosphate.  Journal of Biological Chemistry. (1954);  210 703-707
  • 57 Roitsch T., Balibrea M. E., Hofmann M., Proels R., Sinha A. K.. Extracellular invertase: key metabolic enzyme and PR protein.  Journal of Experimental Botany. (2003);  54 513-524
  • 58 Roitsch T., Ehneß R., Goetz M., Hause B., Hofmann M., Sinha A. K.. Regulation and function of extracellular invertase from higher plants in relation to assimilate partitioning, stress responses and sugar signalling.  Australian Journal of Plant Physiology. (2000);  27 815-825
  • 59 Ros R. O. C., Cooke D. T., Burden R. S., James C. S.. Effects of the herbicide MCPA and the heavy metals, cadmium and nickel on the lipid composition, Mg2+-ATPase activity and fluidity of plasma membranes from rice, Oryza sativa (cv. Bahía) shoots.  Journal of Experimental Botany. (1990);  41 457-462
  • 60 Rosa M., Hilal M., González J. A., Prado F. E.. Changes in soluble carbohydrates and related enzymes induced by low temperature during early developmental stages of quinoa (Chenopodium quinoa) seedlings.  Journal of Plant Physiology. (2004);  161 683-689
  • 61 Roughan P. G., Batt R. D.. Quantitative analysis of sulpholipid (sulphoquinovosyl diglyceride) and galactolipids (monogalactosyl and digalactosyl diglycerides) in plant tissues.  Analytical Biochemistry. (1967);  22 74-88
  • 62 Sandalio L. M., Dalurzo H. C., Gómez M., Romero-Puertas M. C., del Río L. A.. Cadmium-induced changes in the growth and oxidative metabolism of pea plants.  Journal of Experimental Botany. (2001);  52 2115-2126
  • 63 Sanità di Toppi L., Gabbrielli R.. Response to cadmium in higher plants.  Environmental and Experimental Botany. (1999);  41 105-130
  • 64 Schmidt W., Michalke W., Schikora A.. Proton pumping by tomato roots. Effect of Fe deficiency and hormones on the activity and distribution of plasma membrane H+-ATPase in rhizodermal cells.  Plant, Cell and Environment. (2003);  26 361-370
  • 65 Schützendübel A., Schwanz P., Teichmann T., Gross K., Langenfeld-Heyser R., Godbold D. L.. Cadmium-induced changes in antioxidative systems, hydrogen peroxide content, and differentiation in Scots pine roots.  Plant Physiology. (2001);  127 887-898
  • 66 Shaw B. P.. Effect of mercury and cadmium on the activities of antioxidative enzymes in the seedling of Phaseolus aureus.  Biologia Plantarum. (1995);  37 587-596
  • 67 Somashekaraiah B. V., Padmaja K., Prasad A. R. K.. Phytotoxicity of cadmium ions on germinating seedlings of mung bean (Phaseolus vulgaris): involvement of lipid peroxides in chlorophyll degradation.  Physiologia Plantarum. (1992);  85 85-89
  • 68 Stochs S. J., Bagchi D.. Oxidative mechanism in the toxicity of metal ions.  Free Radical Biology and Medicine. (1995);  18 321-336
  • 69 Sturm A., Sebkova V., Lorenz K., Hardegger M., Lienhard S., Unger C.. Development and organ-specific expression of the genes for sucrose synthase and three isoenzymes of acidic β-fructofuranosidase in carrot.  Planta. (1995);  195 601-610
  • 70 Sturm A.. Invertases. Primary structures, functions, and roles in plant development and sucrose partitioning.  Plant Physiology. (1999);  121 1-7
  • 71 Sturm A., Tang G. Q.. The sucrose-cleaving enzymes of plants are crucial for development, growth and carbon partitioning.  Trends in Plant Science. (1999);  4 401-407
  • 72 Vattuone M. A., Prado F. E., Sampietro A. R.. Cell wall invertases from sugar cane.  Phytochemistry. (1981);  20 189-191
  • 73 Weil M., Krausgrill S., Schuster A., Rausch T.. A 17-kDa Nicotiana tabacum cell-wall peptide acts as an in vitro inhibitor of the cell-wall isoform of acid invertase.  Planta. (1994);  193 438-445
  • 74 Winch S., Pritchard J.. Acid-induced wall loosening is confined to the accelerating region of the root growing zone.  Journal of Experimental Botany. (1999);  50 1481-1488
  • 75 Wójcik M., Tukendorf A.. Cd-tolerance of maize, rye and wheat seedlings.  Acta Physiologiae Plantarum. (1999);  21 99-107
  • 76 Wu L. I., Song I., Karuppiah N., Kaufman P. B.. Kinetic induction of oat shoot pulvinus invertase mRNA by gravistimulation and partial cDNA cloning by the polymerase chain reaction.  Plant Molecular Biology. (1993);  21 1175-1179
  • 77 Yeh C. M., Hsiao L. J., Huang H. J.. Cadmium activates a mitogen activated protein kinase gene and MBP kinases in rice.  Plant and Cell Physiology. (2004);  59 1306-1312
  • 78 Zenoff A. M., Hilal M., Galo M., Moreno H.. Changes in roots lipid composition and inhibition of the extrusion of protons during salt stress in two genotypes of soybean resistant or susceptible to stress. Varietal differences.  Plant and Cell Physiology. (1994);  35 729-735

F. E. Prado

Fac. de Ciencias Naturales e IML

Miguel Lillo 205

4000 Tucumán

Argentina

Email: pra@tucbbs.com.ar

Editor: J. Schroeder

    >