Dtsch Med Wochenschr 2006; 131: S226-S230
DOI: 10.1055/s-2006-956278
Übersicht | Review article

© Georg Thieme Verlag KG Stuttgart · New York

Neue Aspekte zur Betazelle und mögliche Therapieansätze

New aspects of pancreatic beta cell functions and their possible therapeutic applicationsM. Tiedge1
  • 1Institut für Medizinische Biochemie und Molekularbiologie, Medizinische Fakultät, Universität Rostock
Further Information

Publication History

eingereicht: 30.6.2006

akzeptiert: 24.8.2006

Publication Date:
30 November 2006 (online)

Zusammenfassung

In diesem Beitrag soll am Beispiel der metabolischen Stimulus-Sekretionskopplung der pankreatischen b-Zelle gezeigt werden, wie aus der Grundlagenforschung heraus neue Strategien zur Therapie des Typ-2-Diabetes-mellitus entwickelt werden können. Die metabolische Stimulus-Sekretionskopplung setzt die Verstoffwechselung von Stimuli der Insulinsekretion voraus, die Nährstoffcharakter besitzen. Die Änderung der ATP/ADP-Ratio in der b-Zelle löst dann die Exozytose der Insulingranula aus. Das glukosephosphorylierende Enzym Glukokinase fungiert als metabolischer Glukosesensor, der Änderungen der physiologischen Glukosekonzentrationen in den b-Zellen des Pankreas und auch der Leber an den Intermediärstoffwechsel, d.h. Glykolyse, Citratzyklus und Atmungskettenphosphorylierung, koppelt und hierdurch die Insulinsekretion und den Leberstoffwechsel positiv beeinflusst. Verschiedene Pharmaunternehmen (Roche, Merck, Astra-Zeneca, Lilly) haben inzwischen erste Glukokinase-aktivierende Substanzen entwickelt und ihre Wirksamkeit in der Behandlung von Tiermodellen des Typ-2-Diabetes belegt. Diese Glukokinase-Aktivatoren verhindern, dass die Glukokinase eine katalytisch inaktive strukturelle Konformation einnimmt. Sie erhöhen die Glukose-Affinität des Enzyms und stabilisieren eine katalytisch aktive Form des Glukokinaseproteins. Hierdurch steigern Glukokinase-Aktivatoren die glukoseinduzierte Insulinsekretion und hemmen die hepatische Glukoneogenese. Glukokinaseaktivatoren stellen eine interessante Innovation für die künftige Behandlung des Typ-2-Diabetes dar, da ihre Wirkung an der b-Zelle und der Leber von Änderungen der Blutglukosekonzentrationen abhängt.

Summary

Using the metabolic stimulus-secretion coupling of pancreatic beta cells as an example, this review illustrates how new strategies in the treatment of type 2 diabetes mellitus can be developed from the results of basic research. Metabolic stimulus-secretion coupling presupposes the metabolizing of those stimuli of insulin secretion that have the properties of nutritional substances. Changes in the ATP/ADP ratio within the beta cells will then trigger the release of insulin granules from them. Glucokinase, a glucose phosphorylating enzyme, functions as a metabolic glucose sensor, which couples changes in physiological glucose concentration in the pancreatic beta cells and in the liver to the intermediary metabolism, i.e. glycolysis, the citrate cycle and respiratory-chain phosphorylation. In this way insulin secretion and hepatic metabolism are positively influenced. Several pharmaceutical companies (Roche, Merck, Astra-Zeneca, Lilly) have recently developed first examples of glucokinase-activating compounds and demonstrated in animal models their efficacy in the treatment of type 2 diabetes mellitus. These glucokinase activators prevent glucokinase from changing into a catalytically inactive structure. They also increase glucose affinity of the enzyme and stabilize a catalytically active form of glucokinase proteins. In this way glucokinase activators increase glucose-induced insulin secretion and inhibit hepatic glucogenesis. Glucokinase activators are an interesting innovation in the future treatment of type 2 diabetes, because their action on beta cells and the liver is caused by changes in blood glucose concentration.

Literatur

  • 1 Agius L, Peak M. Binding and translocation of glucokinase in hepatocytes.  Biochem Soc Trans. 1997;  25 145-150
  • 2 Baltrusch S, Lenzen S, Okar D A, Lange A J, Tiedge M. Characterization of glucokinase-binding protein epitopes by a phage-displayed peptide library. Identification of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase as a novel interaction partner.  J Biol Chem. 2001;  276 43915-43923
  • 3 Baltrusch S, Wu C, Okar D A, Tiedge M, Lange A. Interaction of GK with the bifunctional enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (6PF2K/F26P2ase). Basel, Karger In Glucokinase and glycemic disease Matschinsky FM, Magnuson MA, Eds 2004: 262-274
  • 4 Brocklehurst K J, Payne V A, Davies R A. et al . Stimulation of hepatocyte glucose metabolism by novel small molecule glucokinase activators.  Diabetes. 2004;  53 535-541
  • 5 Chen C, Hosokawa H, Bumbalo L M, Leahy J L. Regulatory effects of glucose on the catalytic activity and cellular content of glucokinase in the pancreatic beta cell. Study using cultured rat islets.  J Clin Invest. 1994;  94 1616-1620
  • 6 Efanov A M, Barrett D G, Brenner M B. et al . A novel glucokinase activator modulates pancreatic islet and hepatocyte function.  Endocrinology. 2005;  146 3696-3701
  • 7 Grimsby J, Sarabu R, Corbett W L. et al . Allosteric activators of glucokinase: potential role in diabetes therapy.  Science. 2003;  301 370-373
  • 8 Henquin J C. Pathways in beta-cell stimulus-secretion coupling as targets for therapeutic insulin secretagogues.  Diabetes. 2004;  (Suppl 3) 53 S48-58
  • 9 Kamata K, Mitsuya M, Nishimura T, Eiki J, Nagata Y. Structural basis for allosteric regulation of the monomeric allosteric enzyme human glucokinase.  Structure. 2004;  12 429-438
  • 10 Lenzen S. Hexose recognition mechanisms in pancreatic B-cells.  Biochem Soc Trans. 1990;  18 105-107
  • 11 Lenzen S, Panten U. Signal recognition by pancreatic B-cells.  Biochem Pharmacol. 1988;  37 371-378
  • 12 Liang Y, Jetton T L, Zimmerman E C. et al . Effects of glucose on insulin secretion, glucokinase activity, and transgene expression in transgenic mouse islets containing an upstream glucokinase promoter-human growth hormone fusion gene.  Diabetes. 1994;  43 1138-1145
  • 13 Massa L, Baltrusch S, Okar D A, Lange A J, Lenzen S, Tiedge M. Interaction of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFK-2/FBPase-2) with glucokinase activates glucose phosphorylation and glucose metabolism in insulin-producing cells.  Diabetes. 2004;  53 1020-1029
  • 14 Matschinsky F M. Glucokinase as glucose sensor and metabolic signal generator in pancreatic beta-cells and hepatocytes.  Diabetes. 1990;  39 647-652
  • 15 Matschinsky F M. Banting Lecture 1995. A lesson in metabolic regulation inspired by the glucokinase glucose sensor paradigm.  Diabetes. 1996;  45 223-241
  • 16 Matschinsky F M. Regulation of pancreatic beta-cell glucokinase: from basics to therapeutics.  Diabetes. 2002;  (Suppl 3) 51 S394-404
  • 17 Matschinsky F M, Magnuson M A, Zelent D. et al . The network of glucokinase-expressing cells in glucose homeostasis and the potential of glucokinase activators for diabetes therapy.  Diabetes. 2006;  55 1-12
  • 18 Newgard C B, McGarry J D. Metabolic coupling factors in pancreatic beta-cell signal transduction.  Annu Rev Biochem. 1995;  64 689-719
  • 19 Okar D A, Manzano A, Navarro-Sabate A, Riera L, Bartrons R, Lange A J. PFK-2/FBPase-2: maker and breaker of the essential biofactor fructose-2,6-bisphosphate.  Trends Biochem Sci. 2001;  26 30-35
  • 20 Rizzo M A, Magnuson M A, Drain P F, Piston D W. A functional link between glucokinase binding to insulin granules and conformational alterations in response to glucose and insulin.  J Biol Chem. 2002;  277 34168-34175
  • 21 Tiedge M, Krug U, Lenzen S. Modulation of human glucokinase intrinsic activity by SH reagents mirrors post-translational regulation of enzyme activity.  Biochem Biophys Acta. 1997;  1337 175-190
  • 22 Tiedge M, Richter T, Lenzen S. Importance of cysteine residues for the stability and catalytic activity of human pancreatic beta cell glucokinase.  Arch Biochem Biophys. 2000;  315 251-260
  • 23 Tiedge M, Steffeck H, Elsner M, Lenzen S. Metabolic regulation, activity state, and intracellular binding of glucokinase in insulin-secreting cells.  Diabetes. 1999;  48 514-523
  • 24 Van Schaftingen E. Short-term regulation of glucokinase.  Diabetologia. 1994;  37 (Suppl 2) S43-S47
  • 25 Van Schaftingen E, Veiga-da-Cunha M. Discovery and role of glucokinase regulatory protein. Basel, Karger In Glucokinase and glycemic disease - From basics to novel therapeutics Matschinsky FM, Magnuson MA, Eds 2004: 193-207
  • 26 Wang H, Iynedjian P. Modulation of glucose responsiveness of insulinoma beta-cells by graded overexpression of glucokinase.  Proc Natl Acad Sci U S A. 1997;  94 4372-4377

Prof. Dr. Markus Tiedge

Institut für Medizinische Biochemie und Molekularbiologie

Schillingallee 70

18057 Rostock

Phone: 0381/4945750

Fax: 0381/4945752

Email: markus.tiedge@med.uni-rostock.de

    >